Beef Balance Sheet, Bull Management, Grazing Monitoring, Antibiotic Treatment after Non-Response

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:40 Beef balance sheet

10:30 Bull management

18:19 Grazing monitoring

24:05 Antibiotic treatment after non-response

KSU Stocker Day

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Managing Plant Biodiversity to Increase Ranching Profits

Recent cow-calf model analysis from the Beef Cattle Institute at Kansas State University indicates that forage yield per acre is a very important driver of profitability; more so than increased reproductive efficiency, decreased maintenance energy requirements or increased forage digestibility (Figure 1).  Increasing reproductive efficiency reduced replacement heifer costs. Decreasing maintenance energy requirements or increasing forage digestibility increased calf growth and calf revenue. But the reduction in replacement costs or increase in revenue was not as great as the reduction in winter feed costs from more forage yield and longer grazing season. Thus, increasing forage yield per acre is one of the most powerful management tools to increase cow-calf profitability.

Plant biodiversity is beneficial for grassland ecosystems by providing food and habitat for wildlife and improving nutrient cycling, soil organic matter, water infiltration, and total biomass production to name a few. Monocultures are easier to manage but may be hurting the productivity of the grassland and making it less resilient to drought and heavy grazing. Mixtures of forbs, legumes, and grasses can boost grassland productivity in the long-run and are more sustainable ecosystems.

When we think of cattle grazing pasture or rangeland, we picture cattle consuming grass, but cattle consume much more than grass. Many plants/forbs considered weeds such as ragweed actually have better nutritional profile than many grasses, and cattle will eat many of them at different stages of plant development. Some of these plants have large tap roots that bring water and nutrients up to the soil surface where the fibrous roots of grasses have access. Non-grass plants can grow between clumps of bunch grasses and provide increased forage through both primary production but also by improving nutrient cycling and soil function for growth of the whole plant community. Additionally, mixtures of grass species that have primary growth at different times of the year such as fescue and crabgrass also increase grassland productivity. The difference in timing of primary growth allows nutrient cycling in a grazing system as the defecated nutrients from one grass fertilize the other.

Not all forbs are consumed by cattle, but forbs that fix nitrogen can be beneficial by adding nitrogen to the soil through decomposition even when not consumed. However, some forbs such as sericea lespedeza can have negative effects on overall grassland productivity, and must be kept in check.

Herbicide sprays often kill both harmful (e.g., sericea lespedeza) and beneficial (e.g., Illinois bundleflower) forbs and legumes, which may reduce overall productivity rather than increase it. Assessing the plant species composition of harmful to beneficial forbs is critical to evaluate whether herbicide application will be cost effective. Other tools such as prescribed burning can also be used to manage the plant species composition without detrimental effects on all forbs and legumes. The take-home message is that a clean field of grass is likely not the most productive or profitable, but neither is a field of weeds: the goal should be to balance the species composition to maximize consumable biomass over the long term.

Figure 1. Correlation of management factors with overall cow-calf profitability. The larger the difference from 0 the more important the management factor to profitability.

Stress in Cattle, Cow Herd Size Changes, Grazing Monitoring, Antibiotic Wait Time

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:17 Stress in cattle

10:55 Cow herd size changes

16:57 Grazing monitoring

24:42 Antibiotic wait time

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Post-weaning Cow Management, Traceability in the Cow-Calf Herd, Better Antibiotics, Food Waste Research

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:26 Post-weaning cow management

9:31 Traceability: what is its place in the cow-calf herd?

15:03 What does better antibiotics mean?

22:25 Food waste research

Cattle Trace

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Anaplasmosis

By Bob Larson

Anaplasmosis is a serious disease that affects cattle in an increasing larger area of the country. A tiny organism called Anaplasma marginale attaches to red blood cells which leads to destruction of those cells and a decrease in the ability of affected cattle to carry oxygen in their blood. If more red blood cells are destroyed than the animal can replace with new cells – the blood becomes watery, the animal becomes anemic, and other signs of infection can occur, including: fever, depression, dehydration, rapid or difficult breathing, and yellow discoloration of the mucus membranes of the gums, around the eyes, and the vulva. Sometimes affected animals become excited and aggressive when not enough oxygen reaches the brain. Young animals are often able to recover because they can make new red blood cells very quickly, but older animals do not produce new cells very fast and they can quickly become very anemic and have very low oxygen levels in the blood leading to severe illness or death.

            Anaplasmosis is primarily carried from cattle to cattle by ticks, but the movement of blood from infected cattle to susceptible cattle can also be accomplished by biting flies such as horseflies, or by human activities such as via blood-contaminated needles, dehorning instruments, tattoo pliers, or palpation sleeves. The disease has historically been a problem in the southern parts of the United States but has now spread north so that cattlemen in many important beef-producing areas need to be aware of the problem. In herds that become exposed to the organism, cattle of any age can become infected, but the severity of illness is usually mild in young cattle and increases with age. In cattle that become infected when they are 3 years of age or older, 30% to 50% of animals showing signs of the disease are likely to die. If infected cattle are able to survive they are not likely to have severe problems due to the disease in the future, but they remain as carriers for the rest of their life. In some cases these carrier infections can be eliminated using antibiotic treatment.

            The first sign of anaplasmosis in a herd may be the sudden death of adult cattle. If anaplasmosis is identified as a cause of death and disease in a herd, cattle that are obviously sick should be kept as quite as possible and treated with an appropriate injectable antibiotic to kill the organism. In addition, tetracycline can be fed in the mineral mix or supplement to provide additional protection to the herd as directed by a veterinarian through a VFD document.

            For carrier cattle that don’t appear sick but that are infected with the anaplasma organism, your veterinarian can plan a treatment protocol using approved antibiotics administered over several days to clear the organism. However, treatment with antibiotics is not effective for all cattle and those animals that are cleared of the organism become susceptible to re-infection.

            The best plan to minimize disease lose due to anaplasmosis depends greatly on a farm’s or ranch’s geographic location and the number of cattle in the area that are infected. In parts of the country where anaplasmosis infection is rare, a strategy to find and treat and/or remove any carrier-animals is recommended. In contrast, in areas of the country where many cattle are infected, an attempt to remove all carriers from a herd will result in a herd that is susceptible to re-infection and the herd may have greater losses than if other strategies had been used to minimize the disease’s effects.

            If infected cattle are found in a herd in a part of the country where anaplasmosis is rare, one strategy to minimize disease loss is to test the herd for anaplasmosis infection and to treat any test-positive animals with an appropriate antibiotic as directed by your veterinarian. This treatment should be at a time of year when the local tick and fly population is the lowest. Because the treatment does not clear infection from every animal, the animals should be tested again about six months after the treatment and if an animal tests positive at this time, it should be considered a treatment-failure and removed from the herd, either by slaughter or by being sold to a herd in an area where anaplasmosis is common.

            In contrast, in herds located where anaplasmosis is common, rather than trying to avoid infection, some producers may want to allow infection to occur while the cattle are young in order to minimize obvious sickness and death loss. In some countries young animals are purposefully exposed to the organism allowing them to build immunity at a time in their life when the disease is mild. Although they will be infected for life, they are not likely to suffer severe illness. In some states in the U.S., your veterinarian may be able to obtain an experimental anaplasmosis vaccine that does not prevent infection, but is reported to reduce the risk of clinical signs and death. Producers may also elect to feed tetracycline under that direction of a veterinarian when the disease is most prevalent to control active infection and to use insecticides to control tick and fly populations.

            Because the best anaplasmosis control strategy for a particular farm or ranch depends on how likely that herd is to come into to contact with the organism, an important component of a control strategy is a plan to deal with replacement animals. If your herd is free of anaplasmosis and the risk of exposure is low, any replacement animal should be tested before being brought into contact with the herd. A test-positive animal should either be culled or isolated and treated and then re-tested six months after treatment. In contrast, if your herd is infected with anaplasmosis and the organism is common in your area, a test-positive replacement animal is desired, and the greatest health risk is in replacement animals that are not infected with the organism but that will be placed in direct contact with carrier animals. In this situation, one option is vaccination (if available) with close monitoring for clinical signs of the disease and quick treatment if disease is detected.

            Anaplasmosis control requires a good working relationship with your veterinarian to determine your level of risk and best control strategies. The best control strategy for your herd may be very different from that of your neighbors or cattlemen in other parts of the country.

Research Round-Up, Alternative Marketing, Talent Management and Development, Flooring and Lameness, Anaplasmosis

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

0:09 Research round-up with Conrad Schelkopf

10:45 Alternative marketing

17:21 Talent management and development

24:09 Flooring and lameness

30:32 Anaplasmosis

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!