Cow Herd Mineral Supplementation

When I think about meeting the nutritional needs of beef cow-calf herds, I fist focus on the ability of the base forage to meet the energy and protein needs of the various groups of cattle on the ranch that differ by age and lactation status. But another aspect of nutrition that must also be considered is the mineral content of the diet. The minerals available from grazed and harvested forages and feed depend greatly on the soil on which it is grown as well as the type of plant being consumed. Because of the importance that soil plays in the availability of many minerals, supplementation needs can vary greatly across North America. In addition, mineral needs (particularly calcium and phosphorus) will increase somewhat in late gestation and to a greater extent during lactation compared to non-lactating cattle (heifers, dry cows, bulls). 

Several minerals are necessary in beef cattle diets to maintain optimum health, reproduction, and growth. Minerals needed in relatively large amounts are described as major or macro minerals while minerals needed in small amounts are usually called micro or trace minerals. The major minerals that most commonly need to be supplemented in beef cattle diets are sodium (salt), calcium, and phosphorus, while magnesium and potassium are major minerals that require supplementation under certain circumstances. The six trace minerals that may be deficient in forage-based diets are copper, cobalt, iodine, selenium, zinc and manganese.

The mineral needed in the greatest amount in beef diets is salt (sodium chloride). Because salt is deficient in most natural feeds, it should be supplemented in all situations. The level of salt needed can vary depending on the diet, type of cattle, and environmental conditions, but a general rule is to supply 1 to 2 oz per day. 

Calcium and phosphorus are often considered together. Calcium content of grass decreases somewhat as forage matures and becomes dormant but often maintains levels that supply dietary needs throughout the year. Phosphorus, however, is leached out of dormant forage, so that by mid-winter levels are much lower than while forages are growing. Grains and many by-product feeds used to supplement cows on dormant forage such as wheat middlings, soybean products, distillers grains, and corn gluten feed have high phosphorus content that will likely provide sufficient levels in the diet. 

The Coastal Plain of Texas and other portions of the Gulf Coast, the Sandhills of Nebraska, Montana, as well as portions of Minnesota, North Dakota, and areas in numerous other states have phosphorus-deficient soils and diet supplementation should be a priority. In many other parts of the country, phosphorus deficiencies are seldom identified and phosphorus supplementation is not needed or can be strategically planned for period of high demand (late gestation and early lactation). 

Deficiency of magnesium is identified as a condition known as grass tetany. Observed most frequently in the early spring, grass tetany results from the consumption of lush forage, which has low levels of magnesium and sodium and has an excess of potassium. In addition to plant factors, grass tetany is associated with late pregnancy and early lactation due to the movement of calcium, phosphorus, and magnesium out of blood circulation and into the udder for milk production. During periods when grass tetany is a danger, a mineral mix with at least 18% magnesium needs to be offered. Because cattle do not like the taste of magnesium oxide, dry molasses or other flavor enhancers should be added to the mineral mix.

Minerals needed in small amounts are called trace minerals, and in most situations requirements are met with grazed forages or supplemental feedstuffs. But deficiencies or imbalances of trace minerals can occur when cattle grazing on some soil types consume plants that are either deficient in some important trace minerals or have excessive amounts of minerals that will tie-up or prevent the proper utilization of other minerals. For example, iron, molybdenum and other minerals, nitrate, sulfate, protein, and plant estrogens are known to reduce copper utilization. The first priority in trace mineral nutrition is to reduce the intake of antagonists in order to minimize the amount of supplemental mineral required. This may be accomplished by changing water sources, rotating pastures so that animals are not on pastures with high levels of antagonists for long periods of time, or changing harvested forage sources.  

Commercial mineral supplements are widely available and will meet the needs of most classes of cattle. The amount of each mineral provided by commercial products must be printed on the label. In some situations (due to concentrate feeds used and soil type), no commercial supplement is available to perfectly meet a herd’s mineral needs. In these situations, custom-mixes can be created. In this circumstance, the supplier of the supplement will work with the producer to provide the proper level of minerals based on analysis of the animal’s diet. 

Salt and other minerals can be delivered to cattle in several forms. If possible, minerals can be mixed into hand-fed protein or energy supplements so that all cattle are more likely to receive their allotted amount. But, if no supplement is being fed or if it is difficult or impossible to add minerals to the supplement, salt/mineral can be offered free-choice in a loose granular form or as a block or tub (or other solid or semi-solid form). All free-choice methods of mineral delivery will likely result in some cattle consuming far more and others far less than the desired amount. It has been reported that supplying salt/mineral in a loose form results in the highest intake, but because of loss to wind and weather or because of other convenience factors, a solid or semi-solid form may be more appropriate in some situations. Many commercial protein supplements – whether in a pellet, cake, tub or liquid form, have salt and other minerals added so that additional mineral supplementation is not needed. 

Because cows do not have the nutritional wisdom to consume the proper amount of free-choice mineral supplement to meet their dietary requirement or to avoid toxicity, it is important to monitor mineral intake. Determining the amount of mineral consumed over several days is necessary in order to know the herd’s average consumption. If consumption is too low, feed intake enhancers such as dry molasses, wheat mids, cottonseed meal or flavoring may be added. If consumption is too high, salt may be used to limit intake to desired levels. 

Managing Rising Input Costs, Rotational Grazing, Bull and Cow Safety

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:30 Managing Rising Input Costs  

9:24 Rotational Grazing

16:19 Bull and Cow Safety

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

New Antibiotic Legislation, First Calf Heifer Management, Hairy Heel Warts

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:02 New Antibiotic Legislation  

8:09 First Calf Heifer Management

15:44 Hairy Heel Warts

Guest: Craig Payne, Associate Extension Professor, Extension Vet Med at the University of Missouri  

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Protein Supplementation will Boost Forage Digestion in Late Summer

As we move into the heat of summer, forage plants begin to reach maturity which means that the amount of lignin deposited in the plant cell wall increases and the amount of protein decreases. This is a continual process as the plant matures, but when the plant begins to put up seed heads is usually when forage digestibility begins to decline, although this can be forage species dependent. Lignin is not readily digested by rumen bacteria, and it also inhibits digestion of the rest of the plant cell wall. Additionally, the decrease in protein concentration becomes limiting for growth of rumen bacteria which decreases their ability to digest plant material. The increase in lignin and decrease in protein combine to reduce forage digestibility which in turn decreases the amount of forage the animal can consume. This becomes a double-edged sword in that the animal does not get as much nutrition from each bite and cannot eat as much.

It is impossible to remove the lignin once it is deposited in the plant cell wall. The only management strategy is to slow down the rate of plant maturation by frequent grazing. To accomplish this effect, cattle must be moved to a new paddock every day which is not practical for many ranches. Also, there is discrepancy as to whether frequent grazing/rest periods has the same effect with all forage species in all regions of the country.

Even though maintaining low lignin concentration of forages is not always practical, increasing the protein supply to rumen bacteria is beneficial and practical. Digestibility of forage can be improved with protein supplementation when forages mature in late summer. Previous research at Kansas State University indicates a 13% improvement in digestibility of native prairie hay with protein supplementation. Available protein sources that work well are soybean meal and cottonseed meal that provide large amounts rumen degradable protein meaning that this protein is available to the rumen bacteria. Other feedstuffs such as distiller’s grains are lower in rumen degradable protein and higher in energy and are better suited when both energy and protein need to supplemented.

Protein supplementation can be easily implemented in many ranch situations due to the ability of the ruminant animal to recycle nitrogen within the body. Because of this ability to recycle nitrogen back to the rumen, beef cows and stocker calves can be supplemented with a high protein feed every 3 to 6 days rather than daily with similar benefits in forage digestion. Be sure to monitor the maturity of forage plants in pastures over the next few weeks to determine the appropriate time to begin protein supplementation. Work with your veterinarian or county extension agent to determine the appropriate time and amount of protein supplement.

Penile Warts, Value of Tree Leaves, Starting in Agriculture

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:58 Listener Question: Penile Warts  

9:20 Listener Question: Value of Tree Leaves

16:50 Listener Question: Starting in Agriculture  

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Being a Good Neighbor from a Cattle Health Standpoint

Being a good neighbor (and having good neighbors) is an important consideration when planning your overall herd health strategy. The impact that neighboring cattle can have on the health of your herd depends on the level of contact, the specific disease in question, and the timing of contact between herds. Nearby herds that can impact your herd’s health can range from herds comingled with yours for grazing purposes, to herds with fence-line contact with your herd, to herds with no direct contact with your cattle but within a distance that escaped cattle, wildlife, humans, and air- and water-flow could move disease-causing agents between herds. For most disease risks, more frequent and long-lasting exposure between herds carries greater risk than very occasional or short-term contact. However, even short-term contact between herds can lead to serious health problems if the exposure occurs during a time in pregnancy when either the dam or fetus is particularly vulnerable, or at an animal-age or time of year when a particular disease causes the most problems.  

Viruses, bacteria, and other microorganisms can cause disease when the dose of disease-causing agents overwhelms the ability of cattle to fight them. Cattle herds can fail to build good immunity to some diseases either because of certain characteristics of the germs themselves or because some disease-causing germs are rarely found in herds and herds are unlikely to build long-term immunity against germs they don’t contact. In these situations, even a small exposure may lead to many cattle becoming sick, aborting their fetuses, or having other negative consequences; and contact between herds increases this risk. In contrast, some disease-causing agents are so common in cattle populations that it is unlikely that any one herd is completely free of the organism – so contact between herds does not greatly increase the risk of many common diseases. 

The germs that cause trichomoniasis (Trich) and bovine viral diarrhea (BVD) are examples whereby most herds are susceptible to major disease problems if exposed to cattle that carry these germs. One of the common ways to expose a herd to these diseases is by contact with neighboring herds. Other diseases such as anaplasmosis are common in many parts of the country but rare in other parts – therefore contact with neighboring herds can increase the risk for these diseases in some areas but not in other areas. And diseases such as bovine leukosis, neosporosis, and the agents that cause bovine respiratory disease and calf scours are so common that contact between herds would rarely increase the disease risk in herds that are already infected.

It is important to work with your veterinarian to devise an appropriate plan to keep your herd from being exposed to cattle that carry Trich and BVD organisms. You should also work with your veterinarian to implement a strategy to limit the negative effects of bovine respiratory disease, calf scours, and other common diseases even though you will not be able to eliminate or keep the germs associated with these diseases from your herd. 

A few diseases can be passed even after cattle have died; therefore, proper carcass disposal to prevent direct contact with other cattle, spread of organisms by scavengers such as coyotes and birds, and contamination of water or soil that other animals may contact is necessary to be a good neighbor. Your veterinarian, Extension agent, or local regulatory contacts can provide you with information about proper carcass disposal. 

Being a good neighbor also means that you control flies as well as toxic plants and weeds that can move from one cattle operation to another. In many situations, pest control can only be effective if all the agriculture operations in the area implement control measures; and all operations benefit from the efforts of others in the area. But even as pesticides and other chemicals intended for use on plants and animals can be important weapons to control disease and improve animal health, they also pose a toxic risk if they are not applied or disposed of properly. It is important that everyone using farm chemicals is properly trained on how chemicals should be applied to animals, plants, and premises, and also how they should be stored so that animals are not accidentally exposed to concentrated, toxic doses, and how to safely dispose of any residues and the empty containers. 

In summary, being a good neighbor from an animal health perspective involves having good pasture management, animal husbandry, and animal health skills. Specifically, good neighbors use effective pest control, maintain good fences to limit unintended cross-fence exposure, and work with a veterinarian to implement vaccination and biosecurity plans for diseases that can move from one herd to another to provide protection not only to your own herd, but to decrease disease risk for other herds in the area. 

Creep Feeding, Minerals & Vitamins, Water Access/Quality

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

6:37 Creep Feeding  

13:00 Minerals & Vitamins 

18:27 Water Access/Quality

Guest: Tyler Melroe, Nutritionist with Hubbard Feeds, a division of Alltech

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!