The Association of Healthcare Food Service hosted their first ever Food, Innovation, Service, Hospitality (FISH) Talks – Live Panel at the 2019 national conference. The broad subject of the panel was to provide healthcare leaders with information surrounding food and climate change that would help them purchase more sustainably. The below clip shares improvements in ranching and farming over the decades thru the eyes of a dietitian, who was once in their food service shoes trying to make similar thoughtful choices.
Category: Beef Sustainability
Thinking Beyond Food Waste to Food Recovery
| Phillip Lancaster, MS, PhD Ruminant nutritionist Beef Cattle Institute Kansas State University palancaster@vet.k-state.edu |
As we listen to conversations about supply issues, food waste and providing food to the hungry, people not familiar with our beef commodity markets have asked why the U.S. exports beef as well as the ethics of feeding human edible beef to our pets. Here are some thoughts and facts to consider. You might think these concepts are common knowledge, and they probably are among your circle of agriculture friends. Sustainable food production questions rarely have simple answers, but try these to help us all have dialogue together and reach the common goal of a more sustainable food supply.
Why do we export beef to other countries?
The majority of beef variety meats are commonly exported as opposed to finding a home in the U.S. Diets are cultural and ours does not typically include variety meats, but we respect that they are of value to others. In the U.S., they are mainly used as pet food ingredients.

Annual exports are generally 9 to 11 percent of total domestic beef production and are a critically important source of revenue. U.S. beef producers receive about $300/head in additional premiums as a result of export values in fed cattle according to Oklahoma State University livestock economist, Derrell Peel. Foreign markets are willing to pay much higher premiums for variety meats than the U.S. consumer and are also purchasing premium cuts as their economies improve.
Why do we feed edible beef to our pets instead of feeding ourselves?
Twenty-five to 30% of the meat eaten in the U.S. is fed to dogs and cats, according to a recent UCLA study. There are 157+ million pets in the U.S. as of 2014 ,which is triple the number since the 1970’s.
While it is not recommended that your dog and cat give up meat, it is good to know that the by-products from beef are an important nutritious ingredient as you do your research on the ingredient label. Veterinary nutritionists tell us that feeding by-products to pets not only is safe and healthy, but it is better for the environment and dramatically reduces food waste. The pet food aisle has seen an influx of brands made with “human-grade” ingredients to lead us to believe they are better than those that contain animal by-products.
The Environmental Protection Agency has developed the “Food Recovery Hierarchy” that demonstrates the most valuable use of food waste down to the last resort — the landfill. Wholesome, edible food should be kept in the human food supply whenever possible. When food is no longer edible for humans but still safe and wholesome for animals, the hierarchy recommends diverting these food scraps to feed animals, including pets.

Shifting gears, there is renewed interest in feeding food scraps to livestock as a way to reduce organic waste in landfills and the methane gas it generates. After disease outbreaks were linked to animal feed back in the 1980’s, there are state laws that regulate the process of converting food waste to animal feed. The Food and Drug Administration’s Bovine Spongiform Encephalopathy/Ruminant Feed Ban Rule also prohibits the use of animal tissue in feeds for ruminant animals such as cattle. Consumers are asking questions about how companies handle their waste, and more research and technology will be needed to overcome some of the barriers of re-feeding people leftovers to food animals. Cattle have demonstrated they can upcycle a variety of products into safe, quality food and can be a part of the environmental solution.
Mitigating Ruminant Methane Emissions
| Phillip Lancaster, MS, PhD Ruminant nutritionist Beef Cattle Institute Kansas State University palancaster@vet.k-state.edu |
Last month we evaluated data indicating that only 35% of current methane emissions from domestic ruminants is contributing to increased atmospheric methane. With reductions in methane emissions ranging from 10 to 50%, feed additives could almost eliminate the 35% contributing to atmospheric methane. Many feed additives have potential adverse effects on the animal, but 3-nitrooxyproponal reduces methane emissions without negatively affecting animal performance and is in the process of commercialization. Furthermore, 3-nitrooxypropanol shifts rumen VFA profile toward higher proportions of propionate making the ruminant animal more feed efficient and the compound very attractive to economically include in livestock rations.

Reassessing Ruminant Methane Contribution
| Phillip Lancaster, MS, PhD Ruminant nutritionist Beef Cattle Institute Kansas State University palancaster@vet.k-state.edu |
The environmental impact of livestock production, especially ruminants, has received a lot of attention in both the scientific community and popular media. One of the most discussed aspects of ruminants’ environmental impact is the production of the greenhouse gas, methane. Methane is produced as a natural byproduct of fermentation in the ruminant stomach during the process of feed digestion. The production of methane is not a man-made process and occurs naturally in all wild and domestic ruminant animals.
Wild ruminants in North America include deer, moose, elk, big horn sheep, antelope and bison with bison having the largest population. Estimates of the bison population prior to European settlement of North America varies greatly ranging from 21 to 88 million. And estimates of the total wild ruminant population prior to settlement ranges from 83 to 133 million. Due to lots of factors chief among them the growth in human population, the wild ruminant population has decreased to 30.5 million today and have been replaced by 90 million domestic ruminants.
Do domestic ruminants produce more methane than wild ruminants? Methane emissions factors for bison are similar to that of domestic cattle when fed the same diet, and both are greater than deer and elk. However, diets of wild and domestic ruminants are not necessarily similar. Diets of domestic ruminants are managed by humans and are typically of greater nutritive value than wild ruminants consume, especially during the winter months when vegetation is dormant.
Attempting to account for differences in methane emissions from wild and domestic ruminants, recent research compared the amount of methane from wild ruminants prior to European settlement of North America and current wild and domestic ruminant populations (Figure 1). Due to the wide variation in estimates of bison population, results were computed for low, medium and high bison populations. Based on these data, the amount of methane from domestic ruminants contributing to the increase in global atmospheric methane concentration is less than 100% because a fraction of that methane is replacing naturally produced methane from pre-settlement wild ruminant populations. Doing the math, the proportion of methane emissions from domestic ruminants in North America that is contributing to atmospheric methane concentrations ranges from 50 to -19% depending upon the pre-settlement bison population with an average of 35%.
Several feed additives have been investigated for their ability to reduce enteric methane emissions from domestic ruminants; the most effective include methane inhibitors, electron acceptors, hydrogen sinks, and plant extracts. These feed additives can reduce enteric methane emissions from 10 to 50% depending upon domestic ruminant species and diet, indicating that implementation could mitigate the 35% of domestic ruminant methane emissions that is new to North America since the European settlement. Although most of these feed additives have adverse effects that may hinder their use, one, 3-nitrooxyproponal, reduces methane emissions without negatively affecting animal performance and is in the process of commercialization. 3-nitrooxypropanol also shifts rumen VFA profile toward higher proportions of propionate making the ruminant animal more feed efficient, which is very similar to another feed additive, monensin, which has been widely adopted in ruminant livestock production. Thus, the use of 3-nitrooxypropanol looks very attractive for producers to economically include in livestock rations and could significantly mitigate enteric methane emissions from domestic ruminants.
In conclusion, the extent of domestic ruminants’ contribution to greenhouse gas emissions is not as great as once thought, although livestock production has more environmental impact than methane alone. It appears that we are on the verge of balancing the methane scale as far as domestic ruminant emissions are concerned.

