Low Stress Facilities, AABP Vaccine Guidelines, Old World Bluestem, Mud Control

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:27 Low stress facilities

8:17 AABP vaccine guidelines

13:08 Listener question: old world bluestem

18:08 Mud control

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Young Bull Health Considerations

Seedstock producers, bull buyers, and veterinarians all have considerable interest in the breeding ability of yearling bulls and the ability of a breeding soundness examination to accurately predict that ability. It is expected that there will be a lot of variability among young bulls, but in general by about 10 to 11 months of age, bulls will reach puberty.  At puberty, sperm cells can be detected in a semen sample, but production is limited and many sperm cells will have one or more defects and the bull would not pass a breeding soundness examination. As bulls age past puberty, sperm production steadily increases and the percentage of abnormal sperm cells in a semen sample will decrease until the age of 16 months when bulls should be sexually mature. Daily sperm production will increase until a bull is about 3 to 4 years of age when testicular weight peaks.

Breeding soundness examinations consist of a complete physical, scrotal measurement as an indication of testicular size, and a semen evaluation. The need for breeding soundness examination of bulls is based on the fact that many prospective breeding bulls are infertile, subfertile, or unable to successfully mate. The physical examination includes observing the bull as he moves – looking for inadequacies in movement, leg conformation, and general body condition. The physical examination continues once the bull is confined in a squeeze chute – noting any abnormal conformation. The lungs and heart are evaluated and a rectal exam is performed to determine the health of internal reproductive organs. The penis should be extended and examined for indications of injury, warts, persistent frenulum, or disease. The testes and epididymis are palpated for evidence of degeneration or inflammation.

An easily obtained and important measurement for evaluating young bulls is the scrotal circumference. Although bulls will reach puberty at wide range of ages and weights, bulls of all breeds tend to reach puberty when the scrotal circumference is pretty close to 28 cm. Remember that a bull that has just recently reached puberty will produce very few fertile sperm cells and he would not be expected to successfully breed more than a few heifers or cows. Typically, young bulls between 10 and 16 months are described as “yearlings” but testicular size and scrotal circumference increases rapidly during this period so it would not be appropriate to directly compare young bulls that differ in age even by as little as a month.

Once the physical examination is complete and the scrotal circumference has been determined with a tape measure, a semen sample is collected either with the aid of an electroejaculator, massage of the prostate, or use of an artificial vagina and a mount animal. The semen sample is evaluated for sperm motility and for the presence of excessive numbers of abnormal sperm. Interpreting semen samples of young bulls less than 13 months of age can be difficult; and while bulls 10 to 13 months of age can be evaluated for scrotal circumference and physical soundness, some veterinarians and seedstock producers choose to delay evaluating sperm quality until a bull is 13 or 14 months of age. Bulls less than 13 months of age that have an excessive percentage of abnormal sperm may very well be too close to puberty and if allowed to mature a little longer will have more than 70% normal sperm cells and be considered a satisfactory breeder. However, if a 14 month old or older “yearling” bull fails a breeding soundness examination because of excessive numbers of abnormal sperm cells, it is fairly likely to fail a breeding soundness examination if tested again at 16 months of age.

Although there is still much to learn about the steps that should be taken to ensure that the greatest number of bull calves can become successful herd bulls, a number of studies have indicated that nutrition in the first few months of life prior to weaning has a tremendous impact on the age at puberty, mature testicular size (and scrotal circumference), and mature sperm production. Energy or protein restrictions in young suckling bulls (usually due to limited forage availability or poor dam milk production) can permanently reduce fertility. Another concern is that if young bulls suffer from any disease prior to weaning, the disruption of growth and health during critical periods of sexual maturation could have permanent negative effects on fertility. These concerns focus our attention on a herd health plan that includes good sanitation, nutrition, parasite control, biosecurity, and vaccinations to minimize the risk of disease.

In contrast to the importance of diets that are adequate for energy and protein very early in life, providing high levels of energy after weaning has not consistently shown any benefit to age a puberty or later fertility. In fact, if high energy diets post-weaning result in fat accumulation in the neck of the scrotum, fertility can be reduced, and bulls that become over-conditioned post-weaning are at increased risk of joint problems in their legs and possibly other problems.

A plan to ensure the health and adequate growth of bull calves prior to weaning and on through to yearling age is essential for optimum bull fertility. Because of the rapid changes that take place after a young bull reaches puberty, evaluating semen quality can be difficult and unproductive before a bull has had the opportunity to mature to the point where he can express his true fertility at about 13 to 14 months of age.

Tracking Technology, Cover Crops, Supplementing Heifers Over the Winter, Dehydration in Calves

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

1:13 Tracking technology

3:05 Listener question: cover crops

10:00 Supplementing heifers over the winter

17:26 Dehydration in calves

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Prep for Calving Season, Water in the Winter, Colostrum Management, Supplementing with Fat

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:08 Prep for calving season

8:27 Water in the winter

14:22 Colostrum management

21:56 Supplementing with fat

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Navel Infection

As we prepare for spring calving, an important health concern in young calves is navel ill which can lead to joint ill. Navel ill occurs shortly after birth when bacteria from the environment or skin are able to enter the calf through the navel and cause an infection or abscess in the umbilical (navel) area. If the infection gets into the blood stream and spreads throughout the body, joints in the legs are likely to become infected and the problem becomes “join ill”.  

The bacteria that cause navel ill or joint ill are very common but are only likely to cause problems if the calf is born in a dirty environment or does not get enough colostrum. So, prevention of this problem focuses on avoiding calving in drylots (or mud lots) so that exposure is minimized, and by minimizing the risk of calving difficulty (particularly in heifers).  

In order for a calf to consume adequate amounts of colostrum, it must be able to stand, walk, find the dam’s teats, and suckle within six hours of birth and then suckle several times in the next 12 hours. In addition, the dam must stand, have a good maternal bond with the calf, and have teats that can be grasped by the calf. Calves born unassisted (i.e., without need of human intervention) stand more quickly, are more likely to bond with their dam, and have greater consumption of colostrum, compared to calves that required assistance during birth. Furthermore, calves requiring minimal assistance are at a substantial advantage compared to calves requiring more assistance during delivery. Proper heifer development and nutrition, use of calving-ease EPD bulls on heifers, and appropriate cow nutrition are good strategies to decrease the risk of calving difficulty. 

Despite the importance of adequate antibody passage, colostral intake is not the only factor that determines whether calves develop navel or joint ill. The other important factor that determines the number of sick calves and the severity of disease is the amount of exposure to disease-causing germs. The ideal location for calving is on well-drained pastures. If heifers or cows need to be moved to a drylot location for calving, extra attention should be given to improve sanitation and to treat the navel of newborn calves with iodine.  

To ensure that calves are born in a sanitary environment, pregnant cows and heifers should be moved from wintering pastures to a clean calving pasture just before start of the calving season. The calving area should be free of mud and should be protected from the wind. A large pasture with good drainage and a natural windbreak is probably all that is necessary for many mature herds. An additional factor that adds to the risk of infectious disease in young calves during severe weather is that cattle will often gather into a small area because of excessive snow or surface water or because of the practice of repeatedly placing feed and bedding in the same location. Producers may also intentionally move cattle into a small area in an attempt to provide them shelter from severe weather. These small areas rapidly become crowded and muddy, which leads to an increased possibility of navel or joint ill in the calves. 

Dipping the navel of newborn calves in iodine can be helpful if the calf is born in a dry-lot or other unsanitary area or if the calving was assisted. If calves are born on well-drained pastures and are experiencing very little calving difficulty, dipping navels is less important.  

Signs of navel or joint ill can occur as early as two days of age. If only the navel is involved, it will usually appear enlarged and wet. If the infection has moved into the blood stream, the calf may appear depressed, have lameness or swollen joints, have cloudy eyes, have a poor appetite or diarrhea, or have a fever. Early in the disease, the navel may not be enlarged. Other diseases and problem can have the same signs as navel ill, so often a veterinarian must examine the calf or calves involved to make a diagnosis. Treatment of calves with joint ill that also have signs of nervous system (brain or spinal cord) disease is not likely to be successful and euthanasia of the calf should be considered. Calves with more than one chronically infected joint as well as an infected navel also have a slight chance for recovery.  

If the infection is limited to the navel area and has not invaded any joints, treatment with antibiotics for several days and possibly surgical removal of the infected navel area have a good chance of being successful. If joints are involved and treatment is attempted, it must be aggressive by using approved broad-spectrum antibiotics for several days. Oral or IV fluids are given to treat and prevent dehydration. Other care may include heat lamps, adequate nutrition, clean, dry bedding areas, and possibly your veterinarian my flush the affected joints.  

When treatment is aggressive, the cost can be quite high. However, if the calf is severely affected, less-aggressive treatment is not likely to be successful. Obviously, prevention by decreasing calving difficulty and improving sanitation is preferable to death, production loss, or high treatment cost for affected calves.  

Sorting Hay and Calves, New Diagnostic Test for BRD, Listener Question

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:15 Follow up from last week: sorting hay and calves

10:08 New diagnostic test for BRD

16:03 Listener question: profitability

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Calving Timing, Breeding Heifers, Body Condition Score Timing

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:15 Calving timing

11:24 Breeding heifers

18:12 BCS timing

Special Guest: Dr. Anne Koontz, Senior Research Scientist

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

KLA/ AVC Conferences, Beef/ Dairy Cross Topics, Differences Between AIP and BRD, How to Get Back into the Beef Industry

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:45 KLA/ AVC Conferences

7:24 Beef/ dairy cross topics

12:09 Differences between AIP and BRD

15:56 Listener question: how to get back into the industry

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Crossbreeding in Small Herds, BRD in Calves Post-Weaning, Feeding Hay vs. Continued Grazing, Low Carbon Meat

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:14 Crossbreeding in small herds

7:52 BRD in calves post-weaning

14:08 Feeding hay vs. continued grazing

21:14 Low carbon meat

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Vitamin A

Although I usually emphasize energy and protein intake when planning winter cow nutrition, ensuring adequate vitamin A intake is also important. Vitamin A is the vitamin most likely to be deficient in cattle diets and is the only vitamin with a well-defined requirement. It is important for vision, bone formation, growth, reproduction, and skin and other tissue health.

Cattle convert yellow and green pigments (carotene) in plants into vitamin A. Carotene is in all green plants and is plentiful in fresh, leafy forage but not found in high concentrations in many concentrate feeds. Cattle can store excess vitamin A in the liver for 2 to 4 months. This storage can serve as source when feeds are deficient. Because of this ability, cattle on green pasture can often store sufficient reserves to help meet their needs during the winter-feeding period when rations may be deficient.

            Large losses of carotene take place in the curing and storage of roughages. Hays that are cut in the bloom stage or earlier and cured without exposure to rain or excessive sun retain most of their original carotene content, while hay cut in the seed stage and exposed to rain or to extended periods of sunshine lose most of the carotene content. Hay rapidly cured with a drier only has a slight loss of carotene. The degree of greenness in roughage is a pretty good indicator of its carotene content. Both carotene and vitamin A are destroyed by oxidation, which can occur during feed storage. The stability of supplemental vitamin A has been increased by modern milling practices such as covering minute droplets of vitamin A with gelatin or wax or by adding an antioxidant to the feed.

            Vitamin A deficiency is most likely to occur when cattle are consuming a high concentrate diet, grazing dormant pasture or eating hay grown during drought conditions, eating feeds that have been stored for long periods of time, or when consuming a protein-deficient diet that is also low in vitamin A. Deficiencies can be corrected by increasing carotene intake by adding fresh, leafy, high-quality forages to the diet, by supplying vitamin A supplements in the feed, or by injection of vitamin A preparations.

The classic sign of vitamin A deficiency in cattle is night blindness (difficulty seeing in dim light) with total and permanent blindness possible in younger animals, and blindness in calves born to deficient dams. Excessive tearing (watery eyes) in cattle also occurs. Vitamin A deficiency can also be identified in animals with rough, dry, and faded hair coats, overgrown hooves that are dry and brittle, and hooves with multiple, vertical cracks. Vitamin A deficiency has also been identified as a cause of infertility in both females (delayed or lack of ovulation, silent heat, and early fetal loss) and bulls (abnormal semen). In addition, because vitamin A is important for the normal function of the tissues lining the respiratory tract, digestive tract, and the urinary tract; pneumonia, diarrhea, and urinary tract stones are also seen in cattle with vitamin A deficiency.

Although clearly identifiable cases of vitamin A deficiency are not particularly common, herds that do not reach their potential reproductive performance, growth rate, and health because of limited vitamin A in the diet are seen. Because the vitamin A activity in typical beef cattle rations is very unpredictable, the total requirement is usually added to the diet as a stabilized vitamin A product. Vitamin A palmitate and vitamin A acetate added to the feed provide relatively inexpensive supplementary sources. Vitamin A can also be given as an injection, with the vitamin being stored in the liver for a number of weeks. Vitamin A requirements for cattle range from 2,000 – 8,000 IU (international units) per 100 pounds of body weight. Growing cattle, lactating cows, and bulls require higher levels of vitamin A than mature dry cows. Vitamin A is very safe to use in cattle feed because toxicity is extremely rare.

            As we move into the winter months when most cow herds will be receiving rations composed of dormant or stored forages, vitamin A supplementation is one of the fist items to consider when planning an appropriate diet.

Supply Chain Shortages, Pasture vs. Non-Pasture Feed Costs, Fetal Programming

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

1:46 Supply chain shortages

5:28 Pasture vs. non-pasture feed costs

12:18 Listener question: fetal programming

Differences Between High-, Medium-, and Low-Profit Cow-Calf Producers – 2016-2020
Kansas Farm Management Association

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Record Analysis, Culling Pregnant Cows, Different Profit Cow-Calf Operations, Withdrawals

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:22 Record analysis: what to do with your records?

8:10 Culling pregnant cows

15:00 Differences in high/ medium/ low profit cow-calf operations

23:00 Withdrawals for vaccines or dewormers

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Record Keeping, Weaning Transitions: Free Hay, Product Handling, Research Round-up

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:20 Record keeping: how to?

6:17 Weaning transitions: free hay?

12:58 Product handling

17:20 Research round-up


Special Guest: Blaine Johnson, Ph.D. Student and BCI Graduate Research Assistant

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Grazing Crop Stubble, Research Round-up: BRD and Pain, Consumer Demand and Cattle Pricing

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:02 Grazing crop stubble

7:58 Research round-up: BRD and pain

18:35 Consumer demand and cattle pricing


Special Guest: Brian Coffey, associate professor of agricultural economics, and Miriam Martin, Ph.D. student

Links:

Corn Stalk Grazing Calculator | UNL Beef

PRDLeaseSurveySummary2020.pdf (k-state.edu)

Estimating a Value for Corn Stover | Ag Decision Maker (iastate.edu)

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Economic Sustainability of Diagnostic Labs, Parasites and Sustainability, Risk Management and Efficiency in Cattle Pricing

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:54 Economic sustainability of diagnostic labs

9:29 Listener question: parasites and sustainability

15:15 Risk management and efficiency in cattle pricing


Special Guest: Brian Coffey, associate professor of agricultural economics

Links:

Cattle Feeder and Beef Packer Tradeoffs Across Live Cattle Marketing Methods
Economic Contribution of the ISU Veterinary Diagnostic Laboratory

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Assessing the Sustainability of Beef Cattle Ranching

A recent paper synthesized ranch sustainability indicators from multiple assessments to develop an overall set of indicators. The indicators include environmental, ecological and socioeconomic aspects of sustainability. The environmental indicators include things like soil carbon and stability, plant productivity, water quality and retention and condition of riparian systems. These indicators are highly influenced by grazing management. Several forms of grazing management exist that can improve these indicators; most involve some form of rotation so that land is not overgrazed leading to bare soil and that plants have rest to recover and develop strong root systems.

The ecological indicators include plant, animal and bird diversity. Again, these indicators are influenced by grazing management, where a diversity of plant species, plant densities and plant heights provide habitat for a diversity of animal and bird species. Also, fire regime is important in controlling the diversity of plant species, again providing habitat for different animal and bird species.

Finally, the socioeconomic indicators include rancher connection with the community, rancher satisfaction, livestock and non-livestock income, forage utilization and capacity to experiment. Many facets of ranch management affect these indicators such as size of the ranching operation, rancher ability to participate in community organizations and geographic location of the ranch. These indicators are the least thought about aspects of ranch sustainability, but are some of the most important because most of all ranching is a livelihood and way of life for people that brings meaning to their lives.

Collectively, these indicators provide a well rounded means of assessing ranch sustainability and communicating all the important aspects of sustainability to the public; not just the environmental aspect.

Cold Weather Concerns

Bob L. Larson, DVM, PhD
Beef Cattle Institute
Kansas State University

A high percentage of the U.S. beef herd resides in areas of the country where moderately to extremely cold winter temperatures are common. By planning for winter weather, ranchers can avoid being caught off-guard by extreme events and can manage the typical winter conditions so that cattle do not have to continually utilize body fat as an energy source to keep warm – leading to excessive loss of body condition.

Situations that are most likely to cause cold stress are: cattle with thin fat cover and short hair coats (due to movement from a warmer environment to a colder environment; or extremely cold temperatures early in the fall/winter season), cattle with wet hides, or high wind speed accompanying cold temperatures. Wind chill is a better predictor of cold stress than temperature alone because cold wind draws heat away more quickly than still air at the same temperature. Wet or mud-caked hair losses its ability to insulate the animal and a wet winter hair coat only provides as much protection from the cold as a typical summer hair coat. If cold wind is combined with a wet hair coat (as can occur during a winter storm), the effects can be very profound.

Adult cattle with a dry hair coat, adequate body condition, and abundant, adequate-quality forage can withstand most winter situations, especially if they have the ability to find protection from wind and have been exposed to moderately cold condition for several weeks which allows them to acclimate by growing a thick winter hair coat and increasing feed intake. As temperatures drop, cattle increase heat production which means that the number of calories they need for maintenance increases. This increase is met by consuming more feed and moving it through the digestive tract faster, but the cost of this faster movement is that feed is not digested as fully. The effect of needing increased calories for maintenance at the same time that feed digestibility is decreasing means that if cows do not have access to plenty of digestible feed, they will have to “burn” body fat as a calorie source. Another factor that can limit feed intake in winter conditions is if water sources are frozen or unavailable. If feed intake cannot keep up with energy demands, and body fat is mobilized to meet energy demands, then the cows will have less fat insulation and will be more susceptible to cold temperatures – causing a viscous cycle that can lead to cold stress and even more weight loss.

Cold weather brings a special concern with bulls because of the potential to have frostbite damage to the scrotum and testicles. It is very important that bulls have protection from the wind and adequate bedding if they are housed on concrete or dirt.

Cold temperatures have the greatest potential to cause serious problems in young calves, particularly calves in the first day of life. Because calves are born wet, have thin skin and very little body fat, they lose body heat very rapidly and if they are not able to become dry, can quickly become severely cold stressed. Contact with snow or wet ground will increase the amount of time that a calf stays wet and in danger. Body temperature of newborn calves can drop to dangerously low levels in 3 hours or less.

Calves are born with a body temperature of about 100˚F. When exposed to a cold environment, calves are able to produce heat in two ways, shivering and the heat production of brown fat (fat that surrounds the kidneys of a new-born) and they can conserve heat by reducing blood flow to the body surface and extremities (feet, ears, etc.). In early stages of cold exposure, calves will shiver vigorously and have a fast heart rate and breathing rate. If that does not keep the body temperature up, the calf’s body sends less blood to feet, ears, and nose in an effort to minimize heat loss. Severe cold stress occurs when the body temperature drops below 94˚F. At this temperature, the brain and other organs are affected and the calf becomes depressed, unable to rise, unwilling to suckle, and will temporarily lose the ability to shiver. The good news is that if the calf can be warmed-up and its body temperature can begin to rise, the shivering response will return and the core body temperature will slowly increase.

During periods of cold or wet weather, newborn calves (less than 1 to 2 days of age) should be checked every few hours with a thermometer and any calf with a below-normal temperature, even if it appears OK, should be warmed. Calves suffering from cold stress must be warmed so that body temperature can rise above 100˚F. If body temperature has not dropped too far, putting the calf in the cab of a pickup out of the wind and rain or snow will warm the calf. In more severe cases the calves can be placed in warm water, specially designed warming boxes, or near a heat source such as an electric blanket, heat lamp, or hot water bottles. To avoid skin burns, the heat source should not exceed 108˚F. In addition to an external heat source, cold-stressed calves should be fed warm colostrum, milk, or electrolyte fluid with an energy source using an esophageal feeder. 

Prevention of cold stress involves management to ensure that calves can be born in a short period of time and both the calf and dam can stand shortly after calving so that they can bond and the calf can begin suckling. Anything that prolongs calving or reduces the chance that a calf will suckle soon after birth should be addressed by management changes. Calving difficulties are minimized by proper heifer development, proper bull selection for calving ease, and proper nutrition so that heifers and cows calve in a body condition score of 5 to 6 on a 9-point scale. Cows with large teats or that are not attentive mothers should be culled.

Use of pasture as the primary forage source during calving encourages cows to keep spread apart and minimizes development of muddy areas. If the herd forage plan includes feeding hay, consider feeding hay in early to mid-gestation and saving stockpiled pasture for the calving season. If supplemental hay and grain are fed during calving, these should be provided at locations that are separate and distant from water sources and windbreaks. I discourage the use of bale rings in calving and nursery pastures and suggest that if using large round bales, they be unrolled and the feeding area changed with each feeding. Unrolled bales will have greater hay waste, but reduced chance for mud caused by concentrating the herd into small feeding areas, and unrolled hay provides bedding for newborn calves so that they are not in direct contact with the ground.

In addition to monitoring the weather forecast for severe winter weather events and to be alerted to times when additional feed is needed, minimizing the effects of cold temperatures on newborn calves involves planning ahead and considering calf comfort and protection when making heifer development, bull selection, nutrition, and pasture management decisions. Making sure that cows will have adequate access to forage and water even in situations with significant snow cover is necessary to provide sufficient calories to maintain body fat and heat production. And, protecting the cowherd (and bulls) from winter wind and providing bedding if on concrete or mud/dirt will minimize the effects of severe weather.

Big versus Small Packers, Moving Cattle onto Fescue, Rotating Internal Parasite Products

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:15 Big packers vs small localized packing systems

11:46 Moving cattle to fescue from non-fescue

17:00 Internal parasite treatment: should you rotate the types of products?

Special Guests: Jeba Chelladurai and Brian Herrin, Parasitology at K-State College of Veterinary Medicine

Links:
Tall Fescue Online Monograph
Examining Markets, Transparency, and Prices from Cattle Producer to Consumer
State of the Beef Supply Chain: Shocks, Recovery, and Rebuilding

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Listener Question: Post-Drought Management, Eliminating Pregnancy Loss, Internal Parasite Treatment

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:54 Listener question: post-drought management

9:42 Eliminating pregnancy loss

17:13 Internal parasite treatment: topical vs. injectable vs. oral

Special Guests: Jeba Chelladurai and Brian Herrin, Parasitology at K-State College of Veterinary Medicine

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Internal Parasites, When to Deworm Calves, Should You Deworm Cows?

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:14 General thoughts on internal parasites

8:15 When to deworm calves

20:05 Should you deworm cows?

Special Guests: Jeba Chelladurai and Brian Herrin, Parasitology at K-State College of Veterinary Medicine

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Climate-neutral Beef: What does it mean for the producer?

Recently, the National Cattlemen’s Beef Association committed the U.S. beef industry to be climate neutral by 2040, but what does that really mean, how are we going to get there, and what does it mean for the individual producer? Climate neutral is different than carbon neutral in that carbon neutral indicates that carbon emissions are equal to carbon sequestration whereas climate neutral indicates no net global warming effect. Beef cattle most probably can never be carbon neutral due to the biogenic carbon cycle (Figure 1) because it would require carbon sequestration to be as great as the carbon synthesis in plants every year. However, beef cattle can be climate neutral because carbon/methane emissions are part of the biogenic carbon cycle rather than a permanent addition to the atmosphere. If methane emissions and photosynthesis are in equilibrium then there is no net global warming.

Aren’t we already in equilibrium? Short answer is no. It takes a decade or more of static cattle numbers and methane emissions before the cycle is in equilibrium, and beef production results in other gases, carbon dioxide and nitrous oxide, that increase global warming. Over the last 30 to 40 years, the beef industry has reduced the carbon emissions intensity (carbon per unit of beef) primarily through increased efficiency (lesser inputs per unit of beef) and diluting maintenance requirements of the cow herd with heavier, faster growing calves. U.S. beef industry is the most efficient production system in the world, but we are maximizing growth and size, and so future reduction in global warming potential will need to come through reductions in total carbon emissions per animal.

What does this mean for the rancher? The reduction in carbon emissions and global warming potential will come from application of several management practices and technologies. For example, improved grazing management and use of cover crops will increase soil carbon sequestration, but also improve soil health and forage/crop productivity. Many new feed additives are being developed to reduce methane emissions, some with potential to increase feed efficiency. Genetic tools will allow selection of animals to reduce maintenance energy requirements, and genetically engineer will produce animals resistant to disease. These practices and technologies and many others will be available to ranchers to reduce carbon emissions and global warming potential, but importantly these practices and technologies will improve economics of beef production. Achieving the climate neutrality goal will be challenging, but will spur many new advancements that will make beef production better for the rancher, consumer and environment.

Figure 1. Illustration of the biogenic carbon cycle of all ruminant animals including cattle. Credit to University of California-Davis CLEAR Center.

Weaning Prep, Listener Question, Transition Diet pt. 2

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:06 Weaning prep: improving calf performance

9:53 Listener question: estrus synch

17:18 Transition diet part 2 ft. Dr. Twig Marston

Special Guest: Twig Marston- Hubbard Feeds, Division of Alltech

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Measuring Cow Herd Efficiency, Role of Research in Cow-Calf Operations, Transition Diets during Weaning

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:30 How to measure efficiency in your cow herd?

12:20 Career perspectives: role of research in commercial cow-calf operations

19:28 Post-weaning calf management: transition diets

Special Guest: Twig Marston- Hubbard Feeds, Division of Alltech

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Monitoring Winter Body Condition

Cows in moderate body condition (BCS 5 to 6) usually require an average of about 55 to 65 days to resume fertile cycles after calving – meaning that mature cows that calve during the first 35 days of the calving season in moderate body condition should be cycling during the first 21 days of the next breeding season starts. In contrast, cows that calve with a BCS of less than 5 require more days to resume fertile cycles, and have very little chance of having fertile cycles by the start of the next breeding season – possibly not until late in the next breeding season.

Good body condition at calving is even more important for the reproductive performance of young cows that are nursing their first calves compared to mature cows because first-lactation cows often require 80 to 100 days to resume fertile cycles after calving. First-calf cows must have a BCS of 5 or greater (preferably 6) to have acceptable pregnancy rates for their second breeding season. In order to reach or maintain a BCS of 6 for first-lactation cows, they should be separated from the mature cowherd and fed to gain the needed weight.

During the winter months, most cattle in the U.S. are consuming dormant or baled forage. In most situations, the forage is poor to moderate in quality. When cattle graze marginal to low quality forages, supplemental protein or energy is often required to enhance either forage intake or animal performance. Poor quality forages (grazed or hay) have two negative effects on cow diets – the first effect is lower intake. While a 1250 pound cow will consume about 31 pounds (as fed) of moderate to good quality forage, she will only consume about 24 pounds of poor quality forage. The second negative effect is that the amount of energy per pound of intake is reduced compared to higher quality forage.

Because of year-to-year variation in forage quality and weather stress, cow body weight and condition can have important year-to-year variation even when fed what appears to be the same diet. Slightly lower forage quality and increased weather stress can result in cows losing more weight than expected. If cows lose condition over the winter so that that they enter the spring-calving season with a poor body condition, calf health and cow reproductive efficiency will be negatively affected.

In general, mature cows in good body condition that are not nursing a calf and that only need to maintain weight can over-winter on forage alone if forage quality is at least moderate and weather stress is low. If cows in good body condition are forced to consume lower-quality forage or if winter weather is harsh, supplemental high quality forage or concentrate will be required to maintain body weight. If cows are thin and need to gain body weight prior to calving, moderate quality forage will not supply the needed nutrients, and supplemental concentrate or high quality forage must be fed. If only poor quality forage is available, even greater levels of supplement must be fed to add body condition to thin cows prior to calving.

Young cows carrying their first pregnancy require energy and protein for their own growth as well as fetal growth, which makes their nutrient requirements higher than those of adult cows. Most dormant or baled forages do not provide all the calories needed for first-pregnancy cows over the winter, especially if the cattle face any weather stress. Ranchers should plan on providing young cows with supplemental high-quality forage or concentrate for at least part of the winter. The amount of supplement required depends on the quality of the base forage (grazed or baled).

In order to determine the amount of supplement required for the available forage, you need to be able to estimate how much energy reserve the cows’ are storing as body fat. Body condition scores (BCS) are used to describe the relative fatness or body fat reserves of a beef cow. The most commonly used system uses a range of 1 to 9, with a score of 1 representing a very thin cow and 9 representing an extremely fat animal.

Body condition scores are an accurate measure of body fat and are convenient in that cattle do not need to be weighed, merely observed and palpated at a time when other procedures are performed. Depending on mature cow size, there is approximately 80 to over 100 lbs. difference in body weight per BCS. When evaluating body condition, it is important to handle the cattle, so that one is not mistakenly evaluating hair coat, gut fill, or stage of pregnancy. The areas to palpate when determining BCS are: ribs, back, backbone, and tailhead. The entire herd, or a subset of each age group, should be evaluated for BCS during the winter to allow adjustments in winter supplementation to occur before cows lose excessive body weight.

It is very difficult for cows to gain body weight on dormant forage once they have calved and started lactating – even if heavily fed. Therefore, cows should reach their desired breeding body condition by the time they calve. In order to have enough days for thin cows to gain weight, herds should be evaluated 3 to 4 months prior to calving. If evaluated at this time, the weight gain for a BCS 3 cow to reach breeding condition (BCS 5) will be approximately 1.5 to 2.0 pounds per day (which is very possible with good forage and supplementation). In contrast, if cows only have 2 months to gain 2 body condition scores, they will need to gain over 3 pounds daily – a much more challenging task.