Cull Cows, Calving Difficulty, the Transition to Grass, Following Up

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:25 Listener question: cull cows

7:15 Calving difficulty

16:00 Transitioning to grass

22:50 Listener follow-ups

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!.

Sustainability, Calving and Spring Issues, BSE, Bull Management and Genetics

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.
Guest: Debbie Lyons-Blythe

4:05 Sustainability: where should producers be involved

10:18 Calving and spring issues

15:40 Listener question: bull soundness exam

24:00 Strategic genetic decisions and bull management

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Changing the Timing of the Spring Calving Season can Increase Economic Sustainability

Choosing the optimum time to calve beef cows involves thinking through a multitude of factors such as potential for extreme weather, availability of grazed forage, marketing and seasonality of calf prices, and availability of labor. Thirty years ago, the logic used for choosing a calving season focused on maximizing calf nutrient intake. At about 3 to 4 months of age, the calf’s nutrient requirements exceed the cow’s milk production, and thus calf nutrient intake and growth could be increased by coinciding this time with the time of highly nutritious forage. In order to accomplish, cows needed to calve in February and March for most latitudes. However, this results in increased feed costs because lactating cows consume more harvested forages and the nutritive value of harvested forages is generally not adequate to meet the nutrient requirements of early lactation cows. Thus, supplemental feed is usually necessary to keep cows in adequate body condition (≥ 5) prior to breeding to ensure high pregnancy rates.

Matching the calving season with the onset of green pasture synchronizes the high nutrient demands of the cow during early lactation and breeding with the time of maximum forage nutritive value. By doing this, stockpiled forages and crop residues can meet the nutritional requirements of cows through December reducing winter hay feeding. Additionally, cows that calve in synchrony with forage nutritive value do not require supplemental feed to maintain body condition prior to breeding. Figure 1 shows the difference in winter hay and supplemental feed usage and delivered feed costs for cows in a Kansas native range forage system with an average calving date of March 1 or April 15.

Many factors affect the sale price of calves including supply and demand, cost of gain the feedlot, and geopolitical issues, all of which the producer has very little control over. Several analyses of performance and financial records indicate that the most profitable operations are those that have low cost of production, which the produce has more control over. Even though later born calves will be lighter at the same sale date and likely even at the same age, controlling costs can improve net returns. Thus, matching cow requirements with forage nutritive value by adjusting the calving season can increase the economic sustainability of a beef operation.




Figure 1. Estimated winter hay and supplement usage, and delivered feed costs for beef cows with an average calving date of March 1 or April 15. Feed costs are calculated using $60/ton and $200/ton for hay and supplement, respectively.

Hay Feeding, Breeding Soundness Exam, Bull Economics, Extending Grazing Season

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:47 Listener question: hay feeding

9:00 Breeding soundness exam

26:24 Bull economics

24:30 Listener question: extending grazing season

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Internal Parasites

Bob L. Larson, DVM, PhD
Beef Cattle Institute
Kansas State University

Internal parasites (or worms) have historically been among the most serious health problems facing cattle. A number of types of internal parasites can affect cattle, including: roundworms, liver flukes, and coccidia. Roundworms primarily live in the gut (stomach and intestine) with one exception being lung worms. Roundworms cause problems for cattle through several pathways including damage to the lining of the digestive tract, reduced forage or feed intake, and stimulation of excessive release of chemicals by the body in an effort to destroy the parasites.

Roundworms spend part of their life cycle in the gut of cattle, while some life cycle stages must take place on pasture grasses. Adult roundworms live in cattle and produce eggs that pass out in the manure. The eggs then hatch to form immature stages that must mature on pasture. These immature stages of the parasite are eaten along with grass as cattle graze. How quickly the eggs hatch and how likely the immature forms of the worms are to survive depends on the climate (temperature and moisture), with warm wet conditions leading to rapid development and high likelihood of survival and very hot or very cold and dry conditions leading to reduced survival. In general, it takes about two to three weeks for eggs deposited in manure to develop to the stage where they can infect grazing cattle, and then they can survive for several months on infected pastures. Once inside the cattle, the parasites complete the life cycle in two to eight weeks – when they gain the ability to lay more eggs.

Calves and yearlings are the most likely classes of cattle to exhibit obvious signs of parasite infection – including weight loss, diarrhea, swelling under the jaw, dull hair coat, and unthrifty appearance. Parasite-infected adults often have weight loss or reduced weight gain, but otherwise appear healthy; although even adults can have obvious signs of parasite infection if the exposure is heavy enough or if poor nutrition or disease compromises their overall health. Heaviest exposure to internal parasites tends to occur in parts of the U.S. with warmer climate, high rainfall, and high stocking density with long grazing seasons that allows the worms to have continuous life-cycles throughout the year (i.e. southeast and south-central regions). In colder and dryer climates, the stocking density is lower and the worms have fewer life cycles in a year because there are fewer months of ideal conditions; this results in reduced parasite exposure. Regardless of the climate, the highest risk of severe parasite loads in cowherds is late in the grazing season.

The discovery of chemicals after World War II that can kill or inhibit roundworm parasites with reduced risk of toxicity to animals compared to earlier treatments have given stockmen valuable tools to decrease the health costs of these challenging adversaries. But in order for dewormers to work well and to maintain their effectiveness, parasite control must involve more than just chemical treatments.

Because young calves and yearlings are more negatively affected by internal parasites than adults, and because some pastures have very high parasite contamination while others will have very light contamination, planning a grazing strategy that places the highest risk cattle on the lowest risk pastures is an important method to minimize losses due to worms. In general, because young cattle tend to be highly susceptible to parasite infection and they quickly develop high parasite burdens, young cattle should not be grazed continually on the same pasture in parts of the country with severe worm challenges, nor should one group of young cattle immediately follow another group of young cattle on the same pasture. Pastures that have not been grazed in order to harvest hay, pastures grazed only by adult cows (without calves at-side), crop residue fields, and pastures grazed by other species such as sheep or goats would all be likely to have low parasite contamination and are ideal for young cattle.

Young cattle have very poor immune protection from internal parasites, but starting at about one year of age, cattle gain the ability to mount an effective immune response for most roundworms (and 18 months of age for the Brown Stomach Worm). If cattle can be protected from high parasite exposure until they are 12 to 18 months of age, they will develop a strong immune response without suffering serious loss. By combining grazing management with timely treatment with deworming products, cattle producers can have very effective parasite control while avoiding the over-use (or under-use) of chemical dewormers.

There are three main classes of chemical dewormers available in the U.S. with several product brands within each class. The primary purpose of chemical dewormers is not to treat cattle that have become sick or negatively affected due to high worm burdens; instead, these products should be used to limit parasite contamination of pastures so that cattle are not greatly affected in the first place. In general, cattle should be treated as they are being turned onto a pasture with a low parasite burden when the conditions are good for parasite survival. In regions of the country with heavy stocking rates and favorable environments for worms (e.g. southern U.S.), young cattle may require two or more treatments at three to six-week intervals during periods of the year that are most favorable to the parasites. None of the available products will work well if treated cattle are turned out onto heavily contaminated pasture.

More aggressive treatment and careful monitoring of conditions is vital in the southeast and south-central portions of the U.S. compared to the high plains and western states because of vastly different risks of negative effects due to internal parasites. Because the best roundworm control strategy will vary greatly from one part of the country to another and between different farms and ranches within the same area because of management options, it is important to work with your veterinarian to plan the optimum control strategy.

Cost of open cows, treating calf scours, mud muck enterotoxemia

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:08 Cost of open cows

10:47 Treating calf scours

16:07 Mud muck

23:27 Listener question- how to prevent enterotoxemia

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Stump the Experts, Prevention Calf Scours, Colostrum Follow-Up, Bull Spring Training

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

1:42 Stump the experts

7:55 Preventing calf scours

17:19 Listener question: colostrum follow-up

23:45 Bull Spring Training

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Synchronization Programs in Heifers, Cold Stress Management, Sustainability in Grasslands

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:01 Planning synchronization programs for heifers

13:15 Cold stress management

22:22 Sustainability in grasslands

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Eric Atkinson, Technology for Information, Ag Innovations, Trends in Information Gathering

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

Guest: Eric Atkinson

2:00 Introduction to Eric Atkinson

4:05 Technology for Information

14:55 Upcoming agriculture innovations

21:15 Trends in information gathering

Agriculture Today

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Regenerative vs. Sustainable Agriculture: What is the difference?

By Phillip Lancaster

In the last 20 to 30 years, there has been a lot of discussion about sustainable agriculture. ‘Sustainable’ has been a buzzword in many industries for the last 20 years with everybody from farmers and ranchers to multi-billion-dollar corporations trying to find ways to be more sustainable. But what does the word sustainable really mean? If we break down the word, ‘sustain’ means to strengthen or support according to Oxford Dictionary. In the context of agriculture, we generally think of sustainability as the ability to support or maintain food production into the future, which suggests more efficient resource use. Agriculture has made tremendous strides in efficiency of resource use over the last 50 years.

Lately, the term regenerative agriculture has become a new buzz word, but it is really not a new concept. Robert Rodale coined the term ‘regenerative organic agriculture’ in the late 1970s as an approach that encouraged continuous innovation and improvement. Breaking down the word, regenerate means to regrow or replace what is lost. In the context of agriculture, we generally think of regenerative as replacing soil carbon/organic matter that was lost due to soil tillage or overgrazing. Again, agriculture has made tremendous strides in replacing soil carbon with adoption of no-till and cover cropping practices, and management intensive grazing in the last 30 years.

There are other aspects of the ecosystem such as plant and animal biodiversity that also fall under the idea of regenerative agriculture. Researchers are beginning to understand how grassland and rangeland management impacts plant species composition and wildlife populations, and developing novel management strategies to such as patch burning to enhance plant and animal biodiversity.

Many of the agricultural management practices that we considered sustainable are also regenerative. Whether the practice is sustainable or regenerative depends on the context of the situation in which the practice is being used. All soils have a maximum attainable soil organic carbon content based on physical characteristics (clay content, bulk density) and climate (rainfall, temperature). For example, a rancher whose soil has reached its maximum attainable soil organic carbon and practices management intensive grazing is sustaining the level of carbon. A second rancher whose soil has not reached its maximum attainable soil organic carbon and practices management intensive grazing is regenerating the level of carbon. Thus, even though they are using the same management practice, the first rancher is practicing sustainable agriculture whereas the second rancher is practicing regenerative agriculture.

As with soil organic carbon, a maximum attainable level of other aspects of the ecosystem will be achieved with regenerative agriculture.  At this point, we will move from replacing what was lost to maintaining the new level, and from regenerative agriculture to sustainable agriculture.

Breeding and Heterogeneity, Colostrum, International Trade, Bull Social Introduction

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:40 Listener question: breeding and heterogeneity

7:47 Colostrum

17:59 International trade

22:53 Listener question: bull social introduction

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Lead Poisoning

Bob L. Larson, DVM, PhD
Beef Cattle Institute
Kansas State University

Many times when we think of cattle diseases we concentrate on infectious diseases caused by bacteria and viruses, or we may think of parasites such as worms, lice, and flies. But, it is important to remember that poisons can also cause rapid death and severe illness in cattle. Cattle, especially young calves, can be very curious about unusual items found in their environment, and they often explore with their tongues and mouths. Sometimes cattle will find and consume improperly disposed of farm chemicals or industrial chemicals around discard piles, electrical transformers and power line poles, or oil pump jacks, but the most common form of poisoning in cattle is due to eating lead. The most common sources of lead include batteries from electric fences and discarded vehicles, old radiators, used crankcase oil, grease from machinery, lead shotgun pellets, construction materials such as putty, lead plumbing, and old paint, and ash from fires where lead-contaminated construction materials were burned. If you ranch in an area with lead mines, the soil and water can be high in lead.

High levels of lead in the body affect red blood cells, bone marrow, and small blood vessels. It will cause abnormal signaling between nerve cells, and will severely damage the kidneys and other organs. In fact lead can have many different negative effects on the body because it can interfere with many different types of enzymes and chemicals necessary for normal body function.

Cattle are more sensitive to lead than most other species and don’t have to consume very much lead to have very sudden and severe problems. Many times, the first sign that a rancher notices is one or more dead calves within a day or two of being exposed to a source of lead. Other calves (and occasionally older cattle) in the group may appear to be blind or they may circle or press their heads against solid objects, cattle may have muscle tremors, teeth grinding, frothing at the mouth, or signs of colic. Cattle with any of these symptoms usually die within 12 to 24 hours. These signs can be very similar to other diseases such as grass tetany, polio, nervous coccidiosis, listeriosis, or rabies, so a veterinarian should be called to investigate the problem.

Because cattle are very sensitive to lead, even small amounts cause severe disease and death in at least part of the herd. Other species are not as sensitive to lead and my show mild signs of illness when exposed. Occasionally, rather than dying, older cattle or cattle exposed to very low doses of lead may show digestive tract problems such as going off feed, becoming constipated or colicky, or having diarrhea. This may be followed by signs of brain or nervous system problems such as blindness, head pressing, or staggering. Infertility of both bulls and cows has been reported following exposure to low levels of lead over a long period of time.

If calves that die due to lead poisoning are necropsied (cut open to examine the body organs), the veterinarian may find nothing that indicates the cause of death, or he/she may find some reddened intestines or lungs – which could look like a clostridial disease or pneumonia. Occasionally, the veterinarian may find evidence of unusual stomach contents, but samples of blood or kidneys are the best samples to diagnose lead poisoning.

It is generally not recommended to treat cattle with signs of lead poisoning because the treatment is very unlikely to be successful. Cattle with lead toxicity are not fit for human consumption because high lead levels can be passed to consumers through the meat. In fact, up to a year or longer after a confirmed lead exposure, cattle that were possibly exposed to lead should have a blood sample tested before they are sold into marketing channels leading to human consumption because they may be carrying high levels of the dangerous mineral. There is no known use for lead in the human body and no acceptable level in the human diet because of its severe negative effects; therefore, every attempt must be made to keep lead out of the food chain.

If lead poisoning is suspected, immediately remove all cattle from the pasture. Treatment begun before signs of disease are noticed may be helpful, and you and your veterinarian may choose to treat young calves that were exposed to lead but that are not showing signs of poisoning. There are treatments given by stomach tube to try to flush the lead out of the digestive tract (magnesium sulfate – Epsom salts), high doses of thiamin (a B-vitamin), and a compound administered into the bloodstream (calcium-EDTA) to tie-up lead circulating in the blood. The treatment of lead poisoning requires multiple treatments per day over several days of therapy and calcium-EDTA administered into the blood is expensive.

This serious problem can be prevented by making sure that your cattle cannot come into contact with old cars or farm equipment, batteries, construction materials, lead paint, or old burn piles. Many times, old equipment or trash piles have been present in a pasture for many years with no problems and then because something disturbs the trash, a fence is moved, or younger cattle are placed in the pasture, cattle can suddenly die of lead poisoning.

Traceability, CattleTrace Pilot Project and Memberships

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

Guest: Callahan Grund

3:46 What is traceability

10:10 What is CattleTrace?

14:09 Current status of the pilot project

23:07 CattleTrace Memberships

Show notes:
CattleTrace Pilot Project
Implementation and Economic Impacts of a Traceability Program on Beef Industry Stakeholders

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Winter Lice, Growing Calf Rations, Cash Marketing of Fed Cattle, Providing Minerals

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

Guest: Phillip Lancaster

3:05 Listener quester- winter lice

7:54 Growing calf rations

15:07 Listener question- cash marketing of fed cattle

23:50 Listener question- providing minerals

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Post-Calving Breeding, Replacement Heifers, Pointers for New Operations, Rotational Grazing Fencing Options

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook and Twitter.

4:35 Listener question- How long post-breeding before breeding?

9:27 Are your replacement heifers ready?

16:49 Listener question- Pointers for new operations

21:36 Considering Rotational Grazing Fencing Options

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

The Confined Cow-Calf System: Tradeoffs Between Environmental and Economic Sustainability

With the high cost of pasture and rangeland, alternatives to grassland cow-calf production are being investigated with cows and/or calves being in confinement all or part of the production cycle. There are many management options with year-round confinement in regions where grazing grass or crop residue is not possible or desirable, short-season grassland grazing during summer and confinement during winter, or confinement during summer and crop residue/cover crop grazing during winter. Harvesting and delivering feed to the cow rather than the cow harvesting feed herself always adds cost to the production system, and thus, confinement or semi-confinement cow-calf systems have additional costs that need to be offset in some way.

One advantage of having cows in confinement is improved feed management with control over the quality and quantity of feed consumed by the cow-calf pair. By limit feeding cows a high energy, by-product diet during the confinement period, maintenance energy requirement is reduced 20 to 40% compared with a low-energy, forage diet fed ad libitum. This reduction in maintenance energy requirement decreases the total feed energy necessary to maintain the cow. Additionally, the calf has access to higher quality feed (ration vs. grass) and weaning weight is increased if the confinement period coincides with mid and late lactation. The higher quality and lower quantity of feed consumed by the cow reduced methane emissions and would likely require less land improving the sustainability of beef production.

But, as mentioned above, there are additional costs for feed, facilities and equipment, and labor; studies indicate that the net returns decrease as the length of the confinement period increases. Additionally, even though less total land would be used, the amount of land under intensive crop production would likely increase reducing ecosystem services provided by grasslands. Also, the conversion efficiency of non-human edible protein to human edible protein decreases with the use of high-energy, by-product diets because more human edible protein is used in the diet. Protein conversion efficiency is one of the most positive attributes of using ruminants for food production and should be a primary goal in designing any cattle production system.

Developing an economically and environmentally sustainable cow-calf production system will be difficult. Changing one aspect of the system to cause an improvement in one metric can easily result in moving another metric in the wrong direction. The beef cattle production system needs to be evaluated as a whole and careful analysis should be completed before making decisions.


Figure 1. Cow maintenance energy requirement (MEm, Mcal/kg.75), cow methane emissions (CH4, CO2 equivalents/kg HeP), human edible protein conversion efficiency (HePCE, %), and net returns (Returns, $/cow) for conventional pasture-based and semi-confinement (3-4 months) cow-calf production systems

Research and Innovation

Bob L. Larson, DVM, PhD

Beef Cattle Institute

Kansas State University

Changes in the tools and solutions available to address beef cattle health and production concerns are being driven by both time-tested and new areas of research and innovation. The advances being made in genetics, geographic information systems, nanotechnology, and computing power are exciting and provide researchers with new tools to learn about cattle nutrition, reproduction, grazing, health, and behavior. But all innovations are built on foundational knowledge of animal husbandry and the daily needs and characteristics of cattle.

Genomics and related research areas such as proteinomics, lipidomics, and other “omics” are used to study the molecules that are inside cells including DNA, RNA, proteins, fats, and carbohydrates. New laboratory tools are being developed to allow animal and veterinary scientists to investigate how different cattle respond to different nutrients, disease challenges, and environmental factors at the cellular level.  These types of studies were not possible just a few years ago, and it is hoped that learning about what is happening in the cells will help explain differences we see in living cattle.

Geographical Information Systems (or GIS) uses maps and other data to ask questions about the characteristics of specific places and the animals, plants, and environment associated with those places. From GPS and GIS technologies in our cars, phones, and farm equipment, “precision agriculture” is changing the way food producers think about using land, animals, labor, and other resources so that each square-foot of land or each individual animal is managed for its own optimal production, rather than for optimal production at the herd or field level. GIS also allows researchers with different areas of expertise such as soil health, forage production, water quality, plant health, cattle health and growth, meat science, and economics to add “layers” to the information for each area and animal on a ranch so that scientists can study complex trade-offs between different aspects of cattle production.

Nanotechnology and nanoscience is the use and study of extremely small things (less than 100 nanometers in size) created to serve many different purposes. To understand how small these devices are – there are over 25 million nanometers per inch, so more than 250,000 of the largest nanodevices could fit in an inch. New microscopes that allow scientists to see things as small as an atom have allowed this area of research and innovation to move rapidly from science fiction to marketable products. Nanodevises could be used to deliver small doses of drugs to parts of the body that are affected by disease and to avoid parts of the body that could have a toxic reaction. Other nanotechnology will likely be used to deliver nutrients, detect disease, and improve meat packaging.

All of these areas of innovation are made possible by rapidly increasing computing power which takes the relatively simple task of doing math problems and allows scientists to ask deeper questions about nature and cattle production. The amount of numbers that are generated by studies using genomics (and other “omics”), GIS, and nanoparticles can only be organized and evaluated using computing speed that was not available until recently. New ways of collecting and storing data and doing math are being developed to keep up with growing amounts of information generated from innovations that are investigating both smaller and larger environments associated with cattle production.

It might be easy to become excited (or appalled) by the innovations that are changing the way scientists do research; but as I look at those who are doing the most beneficial projects, I see animal and veterinary scientists who combine an appreciation for cattle and cattle producers with their knowledge of the latest tools to investigate the mysteries of biology. It seems to me that the more we learn about cattle the more we realize how much is still hidden. By appreciating how amazing cattle and the rest of biology are, scientists take small steps toward understanding the things we see every day – cattle eating grass, growing muscle, becoming pregnant, being challenged with disease, recovering from disease, and serving an important and complex role in the earth’s ecosystem. Although the tools that are the result of and drivers of innovation tend to be complex, the questions that drive cattle research are straightforward and similar to the questions asked by animal and veterinary scientists for generations: How to best utilize forage resources? How to meet the nutrient needs of cattle throughout their life? How to identify individuals with the most valuable genetic traits? How to grow and harvest muscle tissue that makes the most desirable food? And, how to diagnose and treat animals that become sick? In my opinion, the tools aren’t what makes a good scientist, my science heroes have a love for biology, for cattle, and for discovery that makes them want to continue learning throughout their life and to serve cattle and cattle producers by finding solutions to life’s everyday challenges.

Monitoring BCS, Breeding Fall Cows, Cow Size and Profitability, Polio

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook and Twitter.

2:07 Monitoring body condition score

8:50 Breeding fall cows

16:30 Cow size and profitability

25:36 Polio

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Grazing Soybean Stubble, Fescue Toxicity and Vasodilators, Cover Crops to Use Nitrogen in Dry Lot, Winter Water Mineral Supplementation

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook and Twitter.

This week’s guest is Dr. Phillip Lancaster.

2:58 Grazing soybean stubble

7:23 Fescue toxicity and vasodilators

11:58 Cover crops to use nitrogen in dry lot

17:53 Mineral supplementation in winter

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Thin Cow Management, Cull Cow Sales, Feeding During Pregnancy, Year End Analysis

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook and Twitter.

2:46 Listener question: thin cows- is it genetics?

8:23 Listener question: cull cow sales

17:06 Listener question: feeding cows during pregnancy

23:40 Year end analysis

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Foot Problems, Fall Calf Health Issues, Screw Claws, Shelter and Cows in Pasture

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook and Twitter.

This week’s guest is Dr. Matt Miesner of the K-State College of Veterinary Medicine.

4:55 Dealing with feet problems

11:27 Fall calf health issues: scours & BRD

16:14 Listener question- screw claws

23:40 Shelter and cows in pasture

For more on BCI Cattle Chat, follow us on Twitter at @The_BCI, Facebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Intensification of Beef Production Aids in Sustainable Beef Production

Beef production is a significant contributor to global climate change. The source of greenhouse gas emissions is primarily due to inputs into the system such as fertilizer and feed. Estimates of greenhouse gas emissions from beef production are highly variable. Globally, livestock contribute 14% to 18% of total greenhouse gas emissions. Beef production alone accounts for a smaller percentage (6%). In the U.S., beef is an even smaller proportion – only 2%.

So why the discrepancy? Greenhouse gas emissions are highly dependent upon the production system. More intensive systems utilizing highly nutritious feeds, high quality animal genetics, and high levels of management such as the U.S. system produce more beef for each unit of input, which drives down the greenhouse gas intensity. The greenhouse gas intensity is the amount of greenhouse gas emissions per unit of output, in this case carcass weight.

Because of the investment in nutritional quality of feed, animal genetics and management practices, the U.S. system has the lowest greenhouse gas intensity of any major beef producing country (Figure 1). The U.S. produces 18% of the world’s beef and only 8% of the world’s greenhouse gas emissions from beef production. In comparison, Brazil produces 14% of the world’s beef and 19% of the world’s greenhouse gas emissions from beef production. The U.S. system has a ratio of 2.2:1 compared with Brazil’s ratio of 0.75:1 of contribution to beef production relative to contribution to beef greenhouse gas emissions. The U.S. production system has the highest ratio of any of the top 10 beef producing countries with Germany having the next closest at 2.0:1.

Comparisons among greenhouse gas emission intensities of countries (i.e., production systems) indicates that intensifying the system through improving efficiency should be the goal. A global effort to improve nutritional value of feed, increase cattle genetics for growth and yield, and increase producer education of optimum management practices will have the greatest benefit to sustainable beef production. If the other 9 of the top 10 beef producing countries developed beef production systems similar to the U.S., global greenhouse gas emissions from beef production would be reduced by 22%.  

Vaccine Handling, Livestock Financing, Pregnancy Concerns, Value of Land

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook and Twitter.

2:24 Vaccine handling

6:15 Listener question- livestock financing

13:57 Listener question- pregnancy concerns

19:54 Listener question- evaluating the value of land

AgManager.info

For more on BCI Cattle Chat, follow us on Twitter @The_BCI, and check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. Don’t forget if you enjoy the show, please go give us a rating!

Pregnancy Checking, Feeding Equipment, Thin Cow Management, Listener Question

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook and Twitter.

3:40 Pregnancy checking

10:05 Winter feeding equipment

14:10 Thin cow management

24:02 Listener question

For more on BCI Cattle Chat, follow us on Twitter @The_BCI, and check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. Don’t forget if you enjoy the show, please go give us a rating!

Antibiotic Use, Variable Costs, Average Age of Farmers, Vaccinating Cows

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook and Twitter.

3:54 Antibiotic use in calves

6:15 Variable vs. total cost

19:20 Average age of farmers

25:00 Vaccinating/ processing cows

For more on BCI Cattle Chat, follow us on Twitter @The_BCI, and check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. Don’t forget if you enjoy the show, please go give us a rating!