Grazing Plan, Supplementing Cows, Employee Recruitment

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:14 Grazing plan

10:13 Supplementing cows

18:57 Employee recruitment

Guest: Vaughn Holder, Alltech Ruminant Research Director

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

When Bulls Do Not Pass Their BSE, Consumer Interest in Local Beef, Synch and Natural Service

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

5:18 When bulls do not pass their BSE

11:50 Consumer interest in local beef

18:11 Listener question: synch and natural service

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Drought-Related Reasons to Wait on Spring Turnout

Some places of the eastern Great Plains have received some rain, and the drought monitor looks a little better, but much of the Great Plains and Intermountain West are still in moderate to severe drought and areas of extreme drought are increasing. Warmer temperatures and a little moisture have caused some pastures to begin greening up, but without additional rain plant growth will be limited.

Turning out on these pastures too early will have detrimental effects on plant growth. Cattle will graze off the leaf area limiting the ability of the plant to photosynthesize sugars, which will require the plant to pull sugars from the roots. Without rain to stimulate more leaf growth the plant will rely more heavily on nutrient reserves in the roots, possibly decreasing the root zone and capacity to pull the limited moisture from the soil. This stunting of plant growth and reduction of the root zone will have negative effects on forage production in future years.

So, what can you do? Keep cattle off the pasture as long as possible with the optimism of more rain. Continue to feed hay or find other feed resources that may let you economically extend the winter feeding period. In a previous newsletter we discussed limit feeding cows. The difficulty is that lactating cows have their greatest nutrient requirements during this time from calving to rebreeding. Thus, feed expenses will be greater than the last few months. In late gestation, hay with total digestible nutrients (TDN) of 57% and crude protein (CP) of 10% will meet the nutrient requirements of a 1300-lb cow (Figure 1). But in early lactation, the same cow producing 20 lb of peak milk will require TDN of 59.5% and CP of 10.5%. To make up this nutrient deficit will require 4.5 lb/day of a supplement that has TDN of 75% and CP of 20%.

As Dr. Larson, likes to say “There is something magical about green grass.”. As a nutritionist, I am not sure about the magic, but early spring grass has a nutrient profile that will promote fleshing of early lactation cows (Figure 1). Cows that are in a positive energy balance from calving to rebreeding typically return to estrus sooner and rebreed better. There will be tough decisions to make this spring, because neither spring turnout or continued hay and supplement feeding are likely to be without consequences.

Food Animal Veterinary Certificate/ Veterinary Training Program for Rural Kansas, Should You Perform a BSE on a Mature Bull, Veterinary School Advice

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:37 Food Animal Veterinary Certificate/ Veterinary Training Program for Rural Kansas

9:20 Should you perform a BSE on a mature bull?

17:10 Veterinary school advice

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Cattle Handling Facilities

Many animal health interventions require that cattle be gathered to a handling facility that allows individual animals to be separated from the rest of the herd and confined in a squeeze chute. In situations where all the cattle in a pasture or pen are healthy and are going to be handled to give animal health products such as vaccines or parasite control, or to monitor body condition score or pregnancy status, the facilities have to be large enough to accommodate all the cattle in the group. When a few cattle from the herd need to be examined or treated for disease, the facilities have to allow safe and efficient separation of the desired animals from the rest of the herd and then adequate restraint in a squeeze chute to allow access for close inspection of areas on the animal’s body that require treatment. Cattle should be able to be moved from the pasture or pen to the working area and through the handling facilities with a minimum of stress to both the cattle and producer.

Because cattle are prey animals and can easily react to contact with people and dogs with a ‘fight or flight’ response, it is important to prevent cattle from becoming agitated when being handled. Cattle are herd animals and tend to become fearful when left alone. Strategies to minimize fear include moving cattle slowly and quietly and always moving cattle in small groups. Do not use dogs to move cattle in confinement, and minimize the use of electric cattle prods. Because cattle balk at moving or flapping objects, the crowding pens, single-file alley, and loading ramp should be monitored to make sure that nothing within the line of sight could cause them to react. As cattle are moved from the pasture or pen toward the working facility, do not over-crowd them. Never fill the crowd pen – rather only add enough cattle to be about one-half of capacity, and then do not “crush” the cattle with the crowd gate to force them into the single-file alley. The crowd gate is used to follow the cattle, not to shove up against them. Cattle should have room to move around in the crowd pen with the only visible route of escape being the alley. If a lone animal refuses to move, release it and bring it back with another group.

Cattle have excellent wide-angle vision (in excess of 300 degrees) due to the wide position of their eyes and can see behind themselves without turning their heads. And while cattle do have depth perception, they have difficulty seeing the size and shape of objects at ground level when their heads are raised. To see depth near the ground, cattle have to lower their head, perhaps explaining why cattle balk at distractions at ground level. Because contrasting patterns caused by fence or panel shadows will cause balking, lighting considerations are important for moving cattle smoothly through handling facilities. In addition, cattle in a dark area will move towards a dim light but they tend to balk if they have to look into the sun or a bright light. Because cattle may refuse to enter a dark, indoor working alley from a bright, outside crowding pen, it may be necessary to extend the alley outside the building or to cover the crowding area to prevent sharp contrasts in lighting that cause cattle to balk at important points in the handling facility.

Cattle like to maintain visual contact with each other, so in most situations, the single-file alley leading up to the squeeze chute should be at least 20 ft. long (30 to 50 ft. for larger facilities) to allow each animal to see others ahead of it. Don’t force an animal into a single-file alley unless there is plenty of room. If cattle see a dead-end, they will most likely balk, therefore, blocking gates in a single-file alley need to be “see through” so cattle can see the animals ahead.

To protect all the people handling cattle, the corrals, working facilities and chutes must be in good repair and must match the operation and cattle. Gate latches and latches on the squeeze chute (head-catch and squeeze) must have scheduled, proper maintenance because slipped latches are very dangerous. All persons using the squeeze chute should know where the pinch points are, and the arc of movement of squeeze bars and head catch handles. Pipes slid behind cattle to serve as a back-stop are dangerous because an animal moving either forward or backward rapidly before the pipe is fully engaged can trap a person between the pipe and the side of the alley or chute. And to prevent being injured directly by an animal, do not get in the crowding area or alley. Also, the working area should be easy to clean and provide non-slip flooring in the crowd pens, alleys, chutes, and the exit from the chute.

While good working facility design, construction, and maintenance are important for safe and efficient cattle handling, the people handling the cattle probably have the greatest impact on the level of stress inflicted on the cattle and handlers and the ease that cattle move through a facility. Most cattle producers know of people who handle cattle particularly well (as well as people at the opposite extreme). We use terms like cow-sense, common-sense, or stockmanship to describe people who are able to observe cattle behavior accurately and then respond to that behavior so that cattle move exactly where the handler wants them to move. Although there may be some in-born personality traits or skills that make some people naturally better cattle handlers, good cattle-handling training that emphasizes unlearning bad habits and learning low-stress cattle handling habits can benefit anyone who routinely works with cattle.

            It is easy to recognize that handling cattle is required for many, if not most, animal health procedures. In order for health and production management interventions to provide the greatest benefit to a cattle herd, the cattle must be handled through good facilities quietly, efficiently, and with minimal stress.

After the Chat: Bacterial Vaccine Efficacy

In After the Chat, the BCI experts go in deeper about topics from this week’s episode, but also other ideas:

This episode contains a follow on bacterial vaccine efficacy.

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Developing Bulls and Heifers, Bacterial Vaccine Efficacy, Cow Leasing

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:49 Listener question: developing bulls and heifers

11:31 Bacterial vaccine efficacy

18:32 Listener question: cow leasing

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

After the Chat: AI for Cows

In After the Chat, the BCI experts go in deeper about topics from this week’s episode, but also other ideas:

This episode contains cow jokes, a follow-up to AI for Cows, and Kansas trivia!

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

AI for Cows, Transitioning to Lush Pastures, Listener Question: Small Ruminants and Cattle

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:56 AI for cows

12:20 Transitioning to lush pastures

20:00 Listener question: small ruminants and cattle

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Alternative Protein Sources, Risk Management for Cow-Calf Producers, Atypical Pinkeye, Cattle Herd Expansion or Contraction

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:08 Alternative protein sources

9:16 Risk management for cow-calf producers

15:40 Atypical pinkeye in the winter

19:50 Cattle herd expansion or contraction

Guest: Glynn Tonsor, professor of Agricultural Economics at Kansas State University

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Small Calves, Peak Nutritional Needs, Clean-Up Bull Planning, Manheimmia on Environmental Surfaces

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:21 Small calves

7:38 Peak nutritional needs

13:56 Clean-up bull planning

21:08 Manheimmia on environmental surfaces
Read the article here

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Limit Feeding Cows in Drylots

Dry weather across most of the central plains since last fall is creating signals, that a major drought may be on the horizon for this grazing season. The reliance on pasture of most cow herds means that some hard decisions will likely need to be made. The primary decision revolves around feed sources to replace hay or pasture or stretch hay or pasture. Several commodities can be used to replace or stretch hay and pasture; mostly by-products from grain milling.

Two key nutrients are total digestible nutrients (TDN) and crude protein (CP). TDN is the measure of energy used with beef cows, and is the nutrient needed in greatest quantities to maintain performance. CP is the next nutrient needed as far as quantity. Feeds have different concentrations of TDN and CP, and have different costs. Figure 1 illustrates the cost per unit of nutrient of common commodities, which is an effective way to compare feed cost. Hay at $100/ton has the lowest cost per unit of TDN and CP. However, when hay reaches $200/ton, which may happen in severe drought situations especially if trucking long distances, it has the greatest cost per unit of TDN and second greatest cost per unit of CP. Additionally, hay supplies may be limited even if hay is the cheapest source of nutrients.

Currently, corn at $6.50/bu is the least expensive source of TDN followed by soybean hulls at $210/ton and dried distiller’s grains at $280/ton. Dried distiller’s grains is also the least expensive source of CP making it a valuable feed. Therefore, a mixture of corn, soybean hulls, and dried distiller’s grains would be an economically and nutritionally viable option to replace or stretch hay or pasture.

A 1300-lb cow in late lactation requires about 14 lb of TDN and 2.10 lb of CP per day. A mixture of 15% dried distiller’s grains, 20% corn, 35% soybean hulls, and 30% hay fed at 20 lb/day (80% of ad libitum intake) would meet the TDN and CP requirements of the cow. The calf will consume about 4 lb/day of hay or pasture for a total of 24 lb/day. If calves are weaned early at 4 months, 15 lb/day will meet the TDN and CP requirements of an early gestation, dry cow, but then the calf will eat 7 lb/day of mixed ration to gain 2 lb/day for a total of 22 lb/day.

If the price of hay is $100/ton, it is more economical to feed the lactating cow with a nursing calf at $2.11/day, but if the price of hay is $200/ton, it is more economical to wean the calf early and feed a dry cow plus calf at $2.49/day. If the price of hay is $150/ton, then both management options cost the same. This economic calculation is based on the prices of feeds used, and the tipping point will depend upon local hay and commodity prices.

Even though feeding commodities to beef cows and calves can be an economically viable option, it requires the correct management. Feeding large amounts of commodities to beef cows who have full access to pasture or hay will not save much hay and result in greater feed costs. The cost savings is in the fact that less total feed (reduction in hay intake) can be fed to maintain cow performance, which requires limiting access to pasture or hay. It does not require a fenceline feedbunk and mixer wagon. Use the resources you have such as labor, hay intake can be limited by restricting access to the round bale feeder by moving cows in and out of the pen with hay feeders. Early-weaned calves also require more managerial skills in that they are more susceptible to disease and require daily feeding and observation. The rumen of these young calves is not developed enough to effectively digest long-stem hay, and they require moderate energy diet based on grains and commodities to perform well.

Finding alternative feed sources during a drought can be challenging especially if the drought is widespread and hay has to be hauled long distances. Grains and byproduct commodities are viable alternatives that can be used to maintain performance of the cow herd, but feed costs are going to be greater. Additionally, limit feeding moderate concentrate diets to beef cows and managing early-weaned calves requires the correct facilities and managerial skills.

Figure 1. Cost per unit of total digestible nutrients (TDN) and crude protein (CP), and cost per day to maintain 1300-lb cow for common feedstuffs.

Hemp as an Alternative Feedsource, Pain Management Decisions, Tactical Health Plan Building, BRD and Pain Management

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:49 Hemp as an alternative feedsource

8:37 Pain management decisions

14:56 Tactical health plan building

20:42 BRD and pain management

Guest: Mike Kleinhenz

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!Audio Player

Beef Quality Assurance, Biosecurity, Secure Beef Supply with Julia Herman

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:39 Beef Quality Assurance program

10:30 Biosecurity

17:54 Secure beef supply

Guest: Julia Herman, Beef Cattle Veterinarian with NCBA
BQA Resources

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Commitment to Excellence in Herd Health

Bob L. Larson, DVM, PhD
Beef Cattle Institute
Kansas State University

Beef producers have many demands on their time and attention. One of those demands is to achieve excellent health for their herd. In general, cattle can remain healthy in a wide variety of environments and when under a variety of stresses. However, young calves, cows around the time of calving, and cows and their fetuses in the early stages of pregnancy are more at-risk for experiencing health problems than cattle of other ages. In addition, individuals or herds that have to deal with more than one problem at the same time can have severe health problems.

In my opinion, the secret to excellence in herd health is to focus on time-tested aspects of animal husbandry while utilizing some aspects of more modern technology.  The term “animal husbandry” may have gone out of favor in some circles, but it describes the care and feeding of livestock based on good observation skills and a daily commitment to the health and welfare of the animals. Focusing on maintaining good forage availability, good body condition of cattle, and a clean environment that allows for protection from severe weather and predators are long-standing attributes of the best cattle producers. In the past century, additional tools have become available to help improve cattle health. These include advancements in forage management, feed evaluation, internal and external parasite control, vaccines for disease prevention and control, tests for the identification of cattle carrying contagious organisms, and genetic selection to reduce the risk of calving difficulty and other common problems. Combining these modern technologies with age-old husbandry skills allows today’s beef producer to achieve a level of health for their cattle herds that was not possible in the past.

Good cowherd nutrition is built on the foundation of good forage production and management. Abundant growing grass is a fantastic feed that usually results in excellent health of grazing cattle. Cattle can use a wide variety of plants for a healthy diet, but if drought or over-stocking reduces the amount of forage that cattle can consume, health problems are likely to follow. All forages are deficient in salt and providing salt throughout the year is necessary in all parts of the U.S. In addition, other minerals are also needed in cattle diets, but in many areas the available forages provide all or most of a herd’s other mineral needs. In areas or pastures with known mineral deficiencies, specific minerals such as phosphorus, copper, zinc, selenium, or other minerals will need to be supplied. During the winter or other times of the year when forage is dormant, protein and other nutrients may need to be supplemented to ensure that the herd is receiving an adequate diet to maintain body weight and optimum health. Research at universities and other locations over the past several decades have provided nutritionists and veterinarians with valuable information and tools to balance forage-based diets for cattle at the different stages of production such as growth, pregnancy, and lactation.

In addition to a commitment to provide adequate forage and supplements, the other aspect of animal husbandry excellence that has been passed down through the ages is to provide an environment that is clean and gives protection from weather and other stresses. Because cattle are housed outdoors, the natural occurrences of dust and mud are not completely avoidable; but throughout time, the best animal caretakers provided excellent environments for their cattle given the rainfall, snow storms, and other weather events that are common for their area. The best mud-control strategies for cattle on pasture is to make sure that cattle spread out and do not congregate in an area where the combination of rainwater or snow-melt and the hoof action of cattle result in deep mud. The amount of space needed to minimize the risk of problems due to mud will depend on the expected rainfall patterns for an area. Making sure that shelter as well as water, salt, and feed sources are spread to various parts of a pasture will keep cattle from spending too much time as a group in a small area. Mud control strategies for cattle that are housed in drylots include good design and construction of pens to allow water drainage, and frequent scraping to maintain a good pen surface. In areas of the country that can experience severe winter storms, cattle need to be able to find natural or man-made wind-breaks and to have access to areas with good draining that are free of standing water and mud.

One of the greatest advancements for cattle and cattle producers that modern technology has provided has been in the area of parasite control. Throughout history, worms (or internal parasites) and flies and other insects have caused tremendous discomfort, disease risk, and production loss for cattle. Appropriate use of chemicals to interfere with the life-cycles of parasites allows cattle producers to remove much of the negative effect of these pests. Because parasites are very numerous and have the ability to adapt to changing environments and risks, they continue to cause health and production problems. Internal parasites cause more severe problems in young cattle and in cattle that live in warmer parts of the country that have larger parasite populations because they lack the benefit of killing winter temperatures. By working closely with a veterinarian, cattle producers can implement strategies to control parasites for the short-term while making sure that they don’t contribute to the development of pests that resist chemical control.

The knowledge and technologies that make accurate EPDs possible provide a tremendous benefit to cattle producers by giving them tools to reduce the risk of calving difficulty. The period of time with the greatest risk for both calves and their dams is at and shortly after calving. Difficult births cause direct problems for both the dam and the calf and even if a calf survives a difficult birth, the stress of that event as well as reduced colostrum intake combine to increase his risk of death due to scours, navel ill, or pneumonia during the first few months of life. Through good bull selection and heifer selection and development, modern beef producers have tools to reduce the risk of difficult calving that earlier generations would envy.

And finally, an over-arching strategy to achieve excellence in herd health includes using vaccines to reduce the risk and severity of some important cattle diseases, and antibiotics and other modern drugs to treat illnesses and injuries that affect cattle. These advancements in disease treatment and prevention options are valuable, but they must be used correctly and as enhancements and not replacements for good cattle husbandry.  Following Beef Quality Assurance (BQA) guidelines to ensure that all products are administered using the proper injection sites, injection routes (under the skin, in the muscle, into the vein, etc.), dosages, and withdrawal times is a critical step when beef producer commit to excellence in herd health.

Liver Abscesses, Disaster Response, Focus on Feedlot, Cattlemen’s Day Schedule

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:19 Listener question: liver abscesses

9:17 Disaster response

17:12 Focus on Feedlot

21:50 Cattlemen’s Day schedule

Guest: Justin Waggoner, Beef Systems Specialist

Kansas State 45th Annual Legacy Sale
Kansas State Cattlemen’s Day

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Pre-Sale Strategy, Questions with a Bull Expert, Cattle Inventory, FAA Testing in Bulls

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:10 Pre-sale strategy

8:53 Questions with a bull expert

15:47 Cattle inventory

18:46 Listener question: FAA testing in bulls

Guest: Shane Werk, manager of the K-State Purebred Beef Unit

Kansas State 45th Annual Legacy Sale
Kansas State Cattlemen’s Day

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Spring Rains Bring Green Grass and Deep Mud

It has been abnormally dry across much of the cattle feeding country with moderate to severe drought in many places. Dry weather has made for good cattle feeding conditions across cattle feeding country. Typically, March and April are two of the wettest months of the year, which will be a blessing to most of the central plains and western US bringing spring pasture. But these wet months can also be times of extreme mud in dry lot situations. Cattle feeders in the Corn Belt are more likely to have issues with deep mud that can negatively impact cattle performance. Mud depths of 4 to 8 inches can decrease feed intake up to 15% primarily because cattle make fewer trips to the feed bunk. Mud-coated hair also does not insulate cattle well thus more energy is required to maintain body temperature. All of this can decrease daily gain 10 to 20% and increase cost of gain 15 to 25%. Given the dry conditions, it likely that interventions could still be used to minimize the negative effects of mud in the coming months. Correcting pen drainage issues, especially around the feed apron and water trough, and rebuilding mounds would be two important strategies to minimize the negative effects of mud.

Figure 1. Anticipated percent change in feed intake, daily gain and cost of gain for feedlot cattle with 4 to 8 inches of mud.

Sandhills Calving System Definition, Planning for Drought, Conflict Resolution

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:23 Sandhills calving system definition

8:03 Planning for drought

19:21 Conflict resolution

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Minimizing Hay Waste, Balancing Act, Overseeding Legumes, Joint and Navel Ill

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

2:41 Minimizing hay waste

8:20 Balancing act: working on the farm and town

13:25 Overseeding legumes

17:21 Joint and navel ill

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Low Stress Facilities, AABP Vaccine Guidelines, Old World Bluestem, Mud Control

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

4:27 Low stress facilities

8:17 AABP vaccine guidelines

13:08 Listener question: old world bluestem

18:08 Mud control

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Young Bull Health Considerations

Seedstock producers, bull buyers, and veterinarians all have considerable interest in the breeding ability of yearling bulls and the ability of a breeding soundness examination to accurately predict that ability. It is expected that there will be a lot of variability among young bulls, but in general by about 10 to 11 months of age, bulls will reach puberty.  At puberty, sperm cells can be detected in a semen sample, but production is limited and many sperm cells will have one or more defects and the bull would not pass a breeding soundness examination. As bulls age past puberty, sperm production steadily increases and the percentage of abnormal sperm cells in a semen sample will decrease until the age of 16 months when bulls should be sexually mature. Daily sperm production will increase until a bull is about 3 to 4 years of age when testicular weight peaks.

Breeding soundness examinations consist of a complete physical, scrotal measurement as an indication of testicular size, and a semen evaluation. The need for breeding soundness examination of bulls is based on the fact that many prospective breeding bulls are infertile, subfertile, or unable to successfully mate. The physical examination includes observing the bull as he moves – looking for inadequacies in movement, leg conformation, and general body condition. The physical examination continues once the bull is confined in a squeeze chute – noting any abnormal conformation. The lungs and heart are evaluated and a rectal exam is performed to determine the health of internal reproductive organs. The penis should be extended and examined for indications of injury, warts, persistent frenulum, or disease. The testes and epididymis are palpated for evidence of degeneration or inflammation.

An easily obtained and important measurement for evaluating young bulls is the scrotal circumference. Although bulls will reach puberty at wide range of ages and weights, bulls of all breeds tend to reach puberty when the scrotal circumference is pretty close to 28 cm. Remember that a bull that has just recently reached puberty will produce very few fertile sperm cells and he would not be expected to successfully breed more than a few heifers or cows. Typically, young bulls between 10 and 16 months are described as “yearlings” but testicular size and scrotal circumference increases rapidly during this period so it would not be appropriate to directly compare young bulls that differ in age even by as little as a month.

Once the physical examination is complete and the scrotal circumference has been determined with a tape measure, a semen sample is collected either with the aid of an electroejaculator, massage of the prostate, or use of an artificial vagina and a mount animal. The semen sample is evaluated for sperm motility and for the presence of excessive numbers of abnormal sperm. Interpreting semen samples of young bulls less than 13 months of age can be difficult; and while bulls 10 to 13 months of age can be evaluated for scrotal circumference and physical soundness, some veterinarians and seedstock producers choose to delay evaluating sperm quality until a bull is 13 or 14 months of age. Bulls less than 13 months of age that have an excessive percentage of abnormal sperm may very well be too close to puberty and if allowed to mature a little longer will have more than 70% normal sperm cells and be considered a satisfactory breeder. However, if a 14 month old or older “yearling” bull fails a breeding soundness examination because of excessive numbers of abnormal sperm cells, it is fairly likely to fail a breeding soundness examination if tested again at 16 months of age.

Although there is still much to learn about the steps that should be taken to ensure that the greatest number of bull calves can become successful herd bulls, a number of studies have indicated that nutrition in the first few months of life prior to weaning has a tremendous impact on the age at puberty, mature testicular size (and scrotal circumference), and mature sperm production. Energy or protein restrictions in young suckling bulls (usually due to limited forage availability or poor dam milk production) can permanently reduce fertility. Another concern is that if young bulls suffer from any disease prior to weaning, the disruption of growth and health during critical periods of sexual maturation could have permanent negative effects on fertility. These concerns focus our attention on a herd health plan that includes good sanitation, nutrition, parasite control, biosecurity, and vaccinations to minimize the risk of disease.

In contrast to the importance of diets that are adequate for energy and protein very early in life, providing high levels of energy after weaning has not consistently shown any benefit to age a puberty or later fertility. In fact, if high energy diets post-weaning result in fat accumulation in the neck of the scrotum, fertility can be reduced, and bulls that become over-conditioned post-weaning are at increased risk of joint problems in their legs and possibly other problems.

A plan to ensure the health and adequate growth of bull calves prior to weaning and on through to yearling age is essential for optimum bull fertility. Because of the rapid changes that take place after a young bull reaches puberty, evaluating semen quality can be difficult and unproductive before a bull has had the opportunity to mature to the point where he can express his true fertility at about 13 to 14 months of age.

Tracking Technology, Cover Crops, Supplementing Heifers Over the Winter, Dehydration in Calves

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

1:13 Tracking technology

3:05 Listener question: cover crops

10:00 Supplementing heifers over the winter

17:26 Dehydration in calves

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Prep for Calving Season, Water in the Winter, Colostrum Management, Supplementing with Fat

Welcome to BCI Cattle Chat!  Please click on any links below to be taken to sources mentioned in the podcast. Keep an eye out for news regarding the podcast on Facebook, Twitter, and Instagram.

3:08 Prep for calving season

8:27 Water in the winter

14:22 Colostrum management

21:56 Supplementing with fat

For more on BCI Cattle Chat, follow us on Twitter at @The_BCIFacebook, and Instagram at @ksubci. Check out our website, ksubci.org. If you have any comments/questions/topic ideas, please send them to bci@ksu.edu. You can also email us to sign up for our weekly news blast! Don’t forget if you enjoy the show, please go give us a rating!

Navel Infection

As we prepare for spring calving, an important health concern in young calves is navel ill which can lead to joint ill. Navel ill occurs shortly after birth when bacteria from the environment or skin are able to enter the calf through the navel and cause an infection or abscess in the umbilical (navel) area. If the infection gets into the blood stream and spreads throughout the body, joints in the legs are likely to become infected and the problem becomes “join ill”.  

The bacteria that cause navel ill or joint ill are very common but are only likely to cause problems if the calf is born in a dirty environment or does not get enough colostrum. So, prevention of this problem focuses on avoiding calving in drylots (or mud lots) so that exposure is minimized, and by minimizing the risk of calving difficulty (particularly in heifers).  

In order for a calf to consume adequate amounts of colostrum, it must be able to stand, walk, find the dam’s teats, and suckle within six hours of birth and then suckle several times in the next 12 hours. In addition, the dam must stand, have a good maternal bond with the calf, and have teats that can be grasped by the calf. Calves born unassisted (i.e., without need of human intervention) stand more quickly, are more likely to bond with their dam, and have greater consumption of colostrum, compared to calves that required assistance during birth. Furthermore, calves requiring minimal assistance are at a substantial advantage compared to calves requiring more assistance during delivery. Proper heifer development and nutrition, use of calving-ease EPD bulls on heifers, and appropriate cow nutrition are good strategies to decrease the risk of calving difficulty. 

Despite the importance of adequate antibody passage, colostral intake is not the only factor that determines whether calves develop navel or joint ill. The other important factor that determines the number of sick calves and the severity of disease is the amount of exposure to disease-causing germs. The ideal location for calving is on well-drained pastures. If heifers or cows need to be moved to a drylot location for calving, extra attention should be given to improve sanitation and to treat the navel of newborn calves with iodine.  

To ensure that calves are born in a sanitary environment, pregnant cows and heifers should be moved from wintering pastures to a clean calving pasture just before start of the calving season. The calving area should be free of mud and should be protected from the wind. A large pasture with good drainage and a natural windbreak is probably all that is necessary for many mature herds. An additional factor that adds to the risk of infectious disease in young calves during severe weather is that cattle will often gather into a small area because of excessive snow or surface water or because of the practice of repeatedly placing feed and bedding in the same location. Producers may also intentionally move cattle into a small area in an attempt to provide them shelter from severe weather. These small areas rapidly become crowded and muddy, which leads to an increased possibility of navel or joint ill in the calves. 

Dipping the navel of newborn calves in iodine can be helpful if the calf is born in a dry-lot or other unsanitary area or if the calving was assisted. If calves are born on well-drained pastures and are experiencing very little calving difficulty, dipping navels is less important.  

Signs of navel or joint ill can occur as early as two days of age. If only the navel is involved, it will usually appear enlarged and wet. If the infection has moved into the blood stream, the calf may appear depressed, have lameness or swollen joints, have cloudy eyes, have a poor appetite or diarrhea, or have a fever. Early in the disease, the navel may not be enlarged. Other diseases and problem can have the same signs as navel ill, so often a veterinarian must examine the calf or calves involved to make a diagnosis. Treatment of calves with joint ill that also have signs of nervous system (brain or spinal cord) disease is not likely to be successful and euthanasia of the calf should be considered. Calves with more than one chronically infected joint as well as an infected navel also have a slight chance for recovery.  

If the infection is limited to the navel area and has not invaded any joints, treatment with antibiotics for several days and possibly surgical removal of the infected navel area have a good chance of being successful. If joints are involved and treatment is attempted, it must be aggressive by using approved broad-spectrum antibiotics for several days. Oral or IV fluids are given to treat and prevent dehydration. Other care may include heat lamps, adequate nutrition, clean, dry bedding areas, and possibly your veterinarian my flush the affected joints.  

When treatment is aggressive, the cost can be quite high. However, if the calf is severely affected, less-aggressive treatment is not likely to be successful. Obviously, prevention by decreasing calving difficulty and improving sanitation is preferable to death, production loss, or high treatment cost for affected calves.